Evolution of magnetic and orbital properties in the magnetically diluted A -site spinel Cu1−xZnxRh2O4

In frustrated spinel antiferromagnets, dilution with nonmagnetic ions can be a powerful strategy for probing unconventional spin states or uncovering interesting phenomena. Here, we present x-ray, neutron scattering, and thermodynamic studies of the effects of magnetic dilution of the tetragonally distorted $A$-site spinel antiferromagnet, ${\mathrm{CuRh}}_{2}{\mathrm{O}}_{4}$, with nonmagnetic ${\mathrm{Zn}}^{2+}$ ions. Our data confirm the helical spin order recently identified at low temperatures in this material, and further demonstrate a systematic suppression of the associated N\'eel temperature with increasing site dilution towards a continuous transition with critical doping of ${x}_{\mathrm{spin}}\ensuremath{\sim}0.44$. Interestingly, this critical doping is demonstrably distinct from a second structural critical point at ${x}_{JT}\ensuremath{\sim}0.6$, which is consistent with the suppression of orbital order on the $A$ site through a classical percolative mechanism. This anomalously low value for ${x}_{\mathrm{spin}}$ is confirmed via multiple measurements, and is inconsistent with predictions of classical percolation theory, suggesting that the spin transition in this material is driven by an enhancement of preexisting spin fluctuations with weak dilution.

[1]  T. McQueen,et al.  Frustrated spin one on a diamond lattice in NiRh 2 O 4 , 2017, 1701.06674.

[2]  M. Stone,et al.  Spin order and dynamics in the diamond-lattice Heisenberg antiferromagnets CuRh 2 O 4 and CoRh 2 O 4 , 2017, 1706.05881.

[3]  H. Zhou,et al.  Revisiting the ground state of CoAl 2 O 4 : Comparison to the conventional antiferromagnet MnAl 2 O 4 , 2016, 1607.05309.

[4]  G. Tucker,et al.  Spiral spin-liquid and the emergence of a vortex-like state in MnSc2S4 , 2016, Nature Physics.

[5]  Y. Matsushita,et al.  Multistage ordering and critical singularities in C o 1 -x Z n x A l 2 O 4 (0 ≤x ≤1 ) : Dilution and pressure effects in a magnetically frustrated system , 2015 .

[6]  Z. Fu,et al.  Approaching the true ground state of frustratedA-site spinels: A combined magnetization and polarized neutron scattering study , 2014, 1405.4694.

[7]  D. Johnston,et al.  Experimental evidence of a collinear antiferromagnetic ordering in the frustrated CoAl 2 O 4 spinel , 2013, 1308.5238.

[8]  C. Kanadani,et al.  Spin Glass Order by Antisite Disorder in the Highly Frustrated Spinel Oxide CoAl2O4 , 2013 .

[9]  A. Loidl,et al.  Spin liquid in a single crystal of the frustrated diamond lattice antiferromagnet CoAl2O4 , 2011, 1103.5799.

[10]  S. Trebst,et al.  Impurity effects in highly frustrated diamond-lattice antiferromagnets , 2011, 1103.4985.

[11]  G. Ehlers,et al.  Kinetically inhibited order in a diamond-lattice antiferromagnet , 2011, Proceedings of the National Academy of Sciences.

[12]  B. Chakoumakos,et al.  The high-resolution powder diffractometer at the high flux isotope reactor , 2010 .

[13]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[14]  A. Freeman,et al.  Transport and band structure studies of crystalline ZnRh2 O4 , 2010 .

[15]  A. Loidl,et al.  Spin excitations in frustrated A -site spinels investigated with inelastic neutron scattering , 2009 .

[16]  L. Balents,et al.  Tuning magnetic frustration on the diamond lattice of the A-site magnetic spinels CoA12-xGax04: lattice expansion versus site disorder , 2008, 0811.1386.

[17]  L. Balents,et al.  Spin-orbital singlet and quantum critical point on the diamond lattice: FeSc2S4. , 2008, Physical review letters.

[18]  L. Balents,et al.  Theory of the ordered phase in A -site antiferromagnetic spinels , 2008, 0808.3010.

[19]  Yong Baek Kim,et al.  Quantum order by disorder in frustrated diamond lattice antiferromagnets. , 2008, Physical review letters.

[20]  D. Sheptyakov,et al.  Multi-step magnetic ordering in frustrated thiospinel MnSc2S4 , 2007 .

[21]  H. Takagi,et al.  Melting of antiferromagnetic ordering in spinel oxide CoAl2O4 , 2007 .

[22]  Leon Balents,et al.  Order-by-disorder and spiral spin-liquid in frustrated diamond-lattice antiferromagnets , 2006, cond-mat/0612001.

[23]  A. Loidl,et al.  A magnetic study of frustrated and , 2006 .

[24]  A. Loidl,et al.  Spin and orbital frustration in FeSc 2 S 4 probed by Sc 45 NMR , 2006 .

[25]  S. Horn,et al.  Magnetic ordering and spin excitations in the frustrated magnetMnSc2S4 , 2006 .

[26]  A. Loidl,et al.  Geometric frustration in the cubic spinelsMAl2O4(M=Co, Fe, and Mn) , 2005 .

[27]  H. Nakamura,et al.  Classical antiferromagnetism inMnSc2S4: ASc45NMR study , 2005 .

[28]  A. Loidl,et al.  Spin and orbital frustration in MnSc2S4 and FeSc2S4. , 2004, Physical review letters.

[29]  H. Mizoguchi,et al.  ZnRh2O4: A p-type semiconducting oxide with a valence band composed of a low spin state of Rh3+ in a 4d6 configuration , 2002 .

[30]  T. Atake,et al.  Antiferromagnetic transition in CuRh2O4 , 1999 .

[31]  B. Kennedy,et al.  Phase transformation in CuRh2O4: a powder neutron diffraction study , 1999 .

[32]  Tsuji,et al.  Superconductivity in spinel-type compounds CuRh2S4 and CuRh2Se4. , 1995, Physical review. B, Condensed matter.

[33]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[34]  T. Bitoh,et al.  Superconductivity in thiospinel CuRh2S4 , 1992 .

[35]  Henley,et al.  Ordering due to disorder in a frustrated vector antiferromagnet. , 1989, Physical review letters.

[36]  J. Villain,et al.  Order as an effect of disorder , 1980 .

[37]  K. Binder,et al.  Selective sublattice dilution in ordered magnetic compounds: A new kind of percolation problem , 1980 .

[38]  R. Arlett Growth of ZnRh2O4 Single Crystals , 1968 .

[39]  W. Roth Magnetic properties of normal spinels with only a-a interactions , 1964 .