Port Based Modeling of Spatial Visco-Elastic Contacts

In this paper, the geometrical description of viscoelastic contacts is described using physical modeling concepts based on energy conservation and network theory. The proposed model is on one side simple enough to be used in real time applications and on the other captures the geometrical features and coupling of a complete spatial geometric unisotropical contact.

[1]  Stefano Stramigioli,et al.  Modeling the kinematics and dynamics of compliant contact , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[2]  Mark R. Cutkosky,et al.  Friction, Stability and the Design of Robotic Fingers , 1986 .

[3]  M. Dalsmo,et al.  Mathematical structures in the network representation of energy-conserving physical systems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[4]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[5]  Stefano Stramigioli,et al.  Screw bondgraph contact dynamics , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  David J. Montana,et al.  The Kinematics of Contact and Grasp , 1988, Int. J. Robotics Res..

[7]  Henry Martyn Paynter,et al.  Analysis and design of engineering systems : class notes for M.I.T. course 2.751 , 1961 .

[8]  David E. Orin,et al.  A compliant contact model with nonlinear damping for simulation of robotic systems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[9]  W. S. Howard,et al.  On the 6?6 Stiffness Matrix for Three Dimensional Motions , 1995 .

[10]  T. A. Harris,et al.  Rolling Bearing Analysis , 1967 .

[11]  A. Schaft,et al.  The Hamiltonian formulation of energy conserving physical systems with external ports , 1995 .

[12]  A. Schaft,et al.  Hamiltonian formulation of distributed-parameter systems with boundary energy flow , 2002 .

[13]  Antonio Bicchi,et al.  Rolling bodies with regular surface: controllability theory and applications , 2000, IEEE Trans. Autom. Control..

[14]  K. H. Hunt,et al.  Coefficient of Restitution Interpreted as Damping in Vibroimpact , 1975 .

[15]  Vijay Kumar,et al.  Robotic grasping and contact: a review , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[16]  David J. Montana,et al.  The kinematics of contact with compliance , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[17]  Stefano Stramigioli,et al.  Modeling and IPC Control of Interactive Mechanical Systems - A Coordinate-Free Approach , 2001 .

[18]  Vijay Kumar,et al.  Affine connections for the Cartesian stiffness matrix , 1997, Proceedings of International Conference on Robotics and Automation.