Systematic study of homogenization and the utility of circular simplified representative volume element

Although both computational and analytical homogenization are well-established today, a thorough and systematic study to compare them is missing in the literature. This manuscript aims to provide an exhaustive comparison of numerical computations and analytical estimates, such as Voigt, Reuss, Hashin–Shtrikman, and composite cylinder assemblage. The numerical computations are associated with canonical boundary conditions imposed on either tetragonal, hexagonal, or circular representative volume elements using the finite-element method. The circular representative volume element is employed to capture an effective isotropic material response suitable for comparison with associated analytical estimates. The analytical results from composite cylinder assemblage are in excellent agreement with the numerical results obtained from a circular representative volume element. We observe that the circular representative volume element renders identical responses for both linear displacement and periodic boundary conditions. In addition, the behaviors of periodic and random microstructures with different inclusion distributions are examined under various boundary conditions. Strikingly, for some specific microstructures, the effective shear modulus does not lie within the Hashin–Shtrikman bounds. Finally, numerical simulations are carried out at finite deformations to compare different representative volume element types in the nonlinear regime. Unlike other canonical boundary conditions, the uniform traction boundary conditions result in nearly identical effective responses for all types of representative volume element, indicating that they are less sensitive with respect to the underlying microstructure. The numerical examples furnish adequate information to serve as benchmarks.

[1]  Ali Javili,et al.  Generalized interfacial energy and size effects in composites , 2017 .

[2]  L. Noels,et al.  Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method , 2016, Computational Mechanics.

[3]  L. Walpole,et al.  On the overall elastic moduli of composite materials , 1969 .

[4]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[5]  M. Ostoja-Starzewski Material spatial randomness: From statistical to representative volume element☆ , 2006 .

[6]  S. Torquato,et al.  Scale effects on the elastic behavior of periodic andhierarchical two-dimensional composites , 1999 .

[7]  C. Stolz On Micro-Macro Transition in Non-Linear Mechanics , 2010, Materials.

[8]  Sia Nemat-Nasser,et al.  Elastic-plastic composites at finite strains , 1985 .

[9]  Felix Fritzen,et al.  Reduced basis hybrid computational homogenization based on a mixed incremental formulation , 2013 .

[10]  Kohei Yuge,et al.  Two-scale finite element analysis of heterogeneous solids with periodic microstructures , 2004 .

[11]  Sia Nemat-Nasser,et al.  Bounds and estimates of overall moduli of composites with periodic microstructure , 1993 .

[12]  Peter Wriggers,et al.  Computational micro-macro material testing , 2001 .

[13]  V. Kouznetsova,et al.  Multi‐scale constitutive modelling of heterogeneous materials with a gradient‐enhanced computational homogenization scheme , 2002 .

[14]  Q. Qin,et al.  Homogenized Finite Element Analysis on Effective Elastoplastic Mechanical Behaviors of Composite with Imperfect Interfaces , 2014, International journal of molecular sciences.

[15]  David Dureisseix,et al.  A micro–macro and parallel computational strategy for highly heterogeneous structures , 2001 .

[16]  Christophe Geuzaine,et al.  Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation , 2012 .

[17]  C. Miehe,et al.  Computational micro-to-macro transitions for discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy , 2003 .

[18]  P. Zysset,et al.  Influence of boundary conditions on computed apparent elastic properties of cancellous bone , 2008, Biomechanics and modeling in mechanobiology.

[19]  N. Kikuchi,et al.  A class of general algorithms for multi-scale analyses of heterogeneous media , 2001 .

[20]  Daniel Balzani,et al.  Approximation of random microstructures by periodic statistically similar representative volume elements based on lineal-path functions , 2011 .

[21]  J. Michel,et al.  Effective properties of composite materials with periodic microstructure : a computational approach , 1999 .

[22]  Sia Nemat-Nasser,et al.  Universal Bounds for Overall Properties of Linear and Nonlinear Heterogeneous Solids , 1995 .

[23]  P. Steinmann,et al.  Aspects of implementing constant traction boundary conditions in computational homogenization via semi-Dirichlet boundary conditions , 2016, Computational Mechanics.

[24]  Y. Tomita,et al.  Effective properties of cosserat composites with periodic microstructure , 2001 .

[25]  L. Walpole On bounds for the overall elastic moduli of inhomogeneous systems—I , 1966 .

[26]  Yves Chemisky,et al.  Computational micro to macro transitions for shape memory alloy composites using periodic homogenization , 2015 .

[27]  George J. Weng,et al.  Explicit evaluation of Willis' bounds with ellipsoidal inclusions , 1992 .

[28]  Somnath Ghosh,et al.  Multiple scale analysis of heterogeneous elastic structures using homogenization theory and voronoi cell finite element method , 1995 .

[29]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[30]  Jacob Fish,et al.  Toward realization of computational homogenization in practice , 2008 .

[31]  Christian Huet,et al.  Order relationships for boundary conditions effect in heterogeneous bodies smaller than the representative volume , 1994 .

[32]  B. Piotrowski,et al.  Three-dimensional FE2 method for the simulation of non-linear, rate-dependent response of composite structures , 2018, Composite Structures.

[33]  P. Wriggers,et al.  On the optimality of the window method in computational homogenization , 2013 .

[34]  C. Miehe,et al.  Computational micro-to-macro transitions of discretized microstructures undergoing small strains , 2002 .

[35]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials: I. Elastic behaviour , 1964 .

[36]  Paul Steinmann,et al.  Aspects of Computational Homogenization at Finite Deformations: A Unifying Review From Reuss' to Voigt's Bound , 2016 .

[37]  Leong Hien Poh,et al.  A micromorphic computational homogenization framework for heterogeneous materials , 2017 .

[38]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[39]  Fpt Frank Baaijens,et al.  An approach to micro-macro modeling of heterogeneous materials , 2001 .

[40]  M. Ostoja-Starzewski,et al.  On the Size of RVE in Finite Elasticity of Random Composites , 2006 .

[41]  Jean-François Remacle,et al.  A computational approach to handle complex microstructure geometries , 2003 .

[42]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[43]  Dominique Jeulin,et al.  Towards gigantic RVE sizes for 3D stochastic fibrous networks , 2014 .

[44]  Daniel Rixen,et al.  On micro-to-macro connections in domain decomposition multiscale methods , 2012 .

[45]  J. Mandel,et al.  Contribution théorique à l’étude de l’écrouissage et des lois de l’écoulement plastique , 1966 .

[46]  Xikui Li,et al.  A micro–macro homogenization approach for discrete particle assembly – Cosserat continuum modeling of granular materials , 2010 .

[47]  Somnath Ghosh,et al.  Concurrent multi-level model for damage evolution in microstructurally debonding composites , 2007 .

[48]  George Stefanou,et al.  Homogenization of random heterogeneous media with inclusions of arbitrary shape modeled by XFEM , 2014 .

[49]  P. M. Squet Local and Global Aspects in the Mathematical Theory of Plasticity , 1985 .

[50]  Graeme W. Milton,et al.  Rigorous bounds on the effective moduli of composites and inhomogeneous bodies with negative-stiffness phases , 2014, 1401.4142.

[51]  A. Khoei,et al.  A concurrent multi-scale technique in modeling heterogeneous FCC nano-crystalline structures , 2015 .

[52]  P.J.G. Schreurs,et al.  Homogenization of heterogeneous polymers , 1999 .

[53]  M. Geers,et al.  Computational homogenization for heat conduction in heterogeneous solids , 2008 .

[54]  Ray W. Ogden,et al.  On the overall moduli of non-linear elastic composite materials , 1974 .

[55]  Sergio Turteltaub,et al.  Generalized grain cluster method for multiscale response of multiphase materials , 2015 .

[56]  Tarek I. Zohdi,et al.  A numerical method for homogenization in non-linear elasticity , 2007 .

[57]  Kumar Vemaganti,et al.  Hierarchical modeling of heterogeneous solids , 2006 .

[58]  Daniel Balzani,et al.  Construction of two- and three-dimensional statistically similar RVEs for coupled micro-macro simulations , 2014 .

[59]  J. Q. Broughton,et al.  Concurrent coupling of length scales: Methodology and application , 1999 .

[60]  Christian Linder,et al.  A homogenization approach for nonwoven materials based on fiber undulations and reorientation , 2014 .

[61]  P. Papadopoulos,et al.  Novel formulations of microscopic boundary-value problems in continuous multiscale finite element methods , 2015 .

[62]  Wolfgang G. Knauss,et al.  Finite Element Analysis of Multiphase Viscoelastic Solids , 1992 .

[63]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[64]  R. Hill On constitutive macro-variables for heterogeneous solids at finite strain , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[65]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[66]  P. Suquet,et al.  Elements of Homogenization Theory for Inelastic Solid Mechanics, in Homogenization Techniques for Composite Media , 1987 .

[67]  Harm Askes,et al.  The Representative Volume Size in Static and Dynamic Micro-Macro Transitions , 2005 .

[68]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[69]  Bob Svendsen,et al.  Homogenization methods for multi-phase elastic composites: Comparisons and benchmarks , 2010 .

[70]  L. C. Brinson,et al.  Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites , 1998 .

[71]  F. Feyel A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua , 2003 .

[72]  S. Hazanov,et al.  On overall properties of elastic heterogeneous bodies smaller than the representative volume , 1995 .

[73]  Julien Yvonnet,et al.  COMPUTATIONAL HOMOGENIZATION METHOD AND REDUCED DATABASE MODEL FOR HYPERELASTIC HETEROGENEOUS STRUCTURES , 2013 .

[74]  M. Pindera,et al.  Micro-macromechanical analysis of heterogeneous materials: Macroscopically homogeneous vs periodic microstructures , 2007 .

[75]  Zvi Hashin,et al.  On elastic behaviour of fibre reinforced materials of arbitrary transverse phase geometry , 1965 .

[76]  B. Schrefler,et al.  Multiscale Methods for Composites: A Review , 2009 .

[77]  Fredrik Larsson,et al.  Computational homogenization based on a weak format of micro-periodicity for RVE-problems , 2011 .

[78]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[79]  I. Doghri,et al.  Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation , 2004 .

[80]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[81]  N. Kikuchi,et al.  Simulation of the multi-scale convergence in computational homogenization approaches , 2000 .

[82]  V. G. Kouznetsova,et al.  Multi-scale computational homogenization: Trends and challenges , 2010, J. Comput. Appl. Math..

[83]  Marc G. D. Geers,et al.  A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials , 2017, J. Comput. Phys..

[84]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[85]  G. Chatzigeorgiou,et al.  Mathematical homogenization of inelastic dissipative materials: a survey and recent progress , 2018 .

[86]  Laetitia Perez,et al.  Representative volume element of anisotropic unidirectional carbon–epoxy composite with high-fibre volume fraction , 2008 .

[87]  Rainer Glüge,et al.  Comparison of spherical and cubical statistical volume elements with respect to convergence, anisotropy, and localization behavior , 2012 .

[88]  Fredrik Larsson,et al.  Variationally consistent computational homogenization of transient heat flow , 2009 .

[89]  A. Hazel,et al.  Homogenization Methods to Approximate theEffective Response of RandomFibre-reinforced Composites , 2012 .

[90]  B. A. Le,et al.  Computational homogenization of nonlinear elastic materials using neural networks , 2015 .

[91]  F. Larsson,et al.  On statistical strain and stress energy bounds from homogenization and virtual testing , 2015 .

[92]  Xikui Li,et al.  Micro–macro homogenization of granular materials based on the average-field theory of Cosserat continuum , 2014 .

[93]  Bounds on elastic moduli of composites , 1995 .

[94]  Rodney Hill,et al.  Theory of mechanical properties of fibre-strengthened materials—III. self-consistent model , 1965 .

[95]  Z. Hashin,et al.  The Elastic Moduli of Fiber-Reinforced Materials , 1964 .

[96]  M. Ostoja-Starzewski,et al.  Scale and boundary conditions effects in elastic properties of random composites , 2001 .

[97]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[98]  Christian Miehe,et al.  A framework for micro–macro transitions in periodic particle aggregates of granular materials , 2004 .

[99]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[100]  D. Kochmann,et al.  Homogenized mechanical properties of auxetic composite materials in finite-strain elasticity , 2013 .

[101]  J. Willis,et al.  On methods for bounding the overall properties of nonlinear composites , 1991 .

[102]  P. Steinmann,et al.  Computational homogenization in magneto-mechanics , 2013 .

[103]  F. Fritzen,et al.  Nonlinear reduced order homogenization of materials including cohesive interfaces , 2015 .

[104]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .