Algorithms and applications for a class of bilevel MILPs

Abstract We study a class of bilevel mixed-integer linear programs with the following restrictions: all upper level variables x are binary, the lower level variables y occur in exactly one upper level constraint γ x + β y ≥ c , and the lower level objective function is min y β y . We propose a new cut generation algorithm to solve this problem class, based on two simplifying assumptions. We then propose a row-and-column generation algorithm that works independently of the assumptions. We apply our methods to two problems: one is related to the optimal placement of measurement devices in an electrical network, and the other is the minimum zero forcing set problem, a variant of the dominating set problem. We exhibit computational results of both methods on the application-oriented instances as well as on randomly generated instances.

[1]  R. Kevin Wood,et al.  Shortest‐path network interdiction , 2002, Networks.

[2]  Patrice Marcotte,et al.  Bilevel programming: A survey , 2005, 4OR.

[3]  Sarah Meyer,et al.  Propagation time for zero forcing on a graph , 2012, Discret. Appl. Math..

[4]  Gerhard J. Woeginger,et al.  Bilevel programming and the separation problem , 2013, Mathematical Programming.

[5]  Matteo Fischetti,et al.  Intersection Cuts for Bilevel Optimization , 2016, IPCO.

[6]  Pierre-Louis Poirion,et al.  The power edge set problem , 2016, Networks.

[7]  Charles Audet,et al.  New Branch-and-Cut Algorithm for Bilevel Linear Programming , 2004 .

[8]  L. N. Vicente,et al.  Discrete linear bilevel programming problem , 1996 .

[9]  Michael A. Henning,et al.  A note on power domination in grid graphs , 2006, Discret. Appl. Math..

[10]  Jonathan F. Bard,et al.  The Mixed Integer Linear Bilevel Programming Problem , 1990, Oper. Res..

[11]  Gerhard J. Woeginger,et al.  A Study on the Computational Complexity of the Bilevel Knapsack Problem , 2014, SIAM J. Optim..

[12]  Xiaotie Deng,et al.  Complexity Issues in Bilevel Linear Programming , 1998 .

[13]  P. S. Georgilakis,et al.  Taxonomy of PMU Placement Methodologies , 2012, IEEE Transactions on Power Systems.

[14]  Ted K. Ralphs,et al.  A Branch-and-cut Algorithm for Integer Bilevel Linear Programs , 2009 .

[15]  Eduardo L. Pasiliao,et al.  Minimum vertex blocker clique problem , 2014, Networks.

[16]  P. S. Georgilakis,et al.  Optimal placement of phasor measurement units: A literature review , 2011, 2011 16th International Conference on Intelligent System Applications to Power Systems.

[17]  W. Haemers Zero forcing sets and minimum rank of graphs , 2008 .

[18]  Gerhard J. Woeginger,et al.  Bilevel Knapsack with Interdiction Constraints , 2016, INFORMS J. Comput..

[19]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[20]  Stephan Dempe,et al.  Linear bilevel programming with upper level constraints depending on the lower level solution , 2006, Appl. Math. Comput..

[21]  Lenwood S. Heath,et al.  The PMU Placement Problem , 2005, SIAM J. Discret. Math..

[22]  D. West Introduction to Graph Theory , 1995 .

[23]  Pierre-Louis Poirion,et al.  Bilevel mixed-integer linear programs and the zero forcing set ? , 2015 .

[24]  Michael A. Henning,et al.  Domination in Graphs Applied to Electric Power Networks , 2002, SIAM J. Discret. Math..

[25]  Jonathan L. Gross,et al.  Handbook of graph theory , 2007, Discrete mathematics and its applications.

[26]  Iain Dunning,et al.  Computing in Operations Research Using Julia , 2013, INFORMS J. Comput..

[27]  R. Fortet L’algebre de Boole et ses applications en recherche operationnelle , 1960 .

[28]  Pierre-Louis Poirion,et al.  Observing the State of a Smart Grid Using Bilevel Programming , 2015, COCOA.

[29]  Bo Zeng Solving Bilevel Mixed Integer Program by Reformulations and Decomposition June , 2014 , 2014 .