On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data

[1] We invert global observations of fundamental and higher-order Love and Rayleigh surface wave dispersion data jointly at selected locations for 1-D radial profiles of Earth’s mantle composition, thermal state, and anisotropic structure using a stochastic sampling algorithm. Considering mantle compositions as equilibrium assemblages of basalt and harzburgite, we employ a self-consistent thermodynamic method to compute their phase equilibria and bulk physical properties (P, S wave velocity and density). Combining these with locally varying anisotropy profiles, we determine anisotropic P and S wave velocities to calculate dispersion curves for comparison with observations. Models fitting data within uncertainties provide us with a range of profiles of composition, temperature, and anisotropy. This methodology presents an important complement to conventional seismic tomography methods. Our results indicate radial and lateral gradients in basalt fraction, with basalt depletion in the upper and enrichment of the upper part of the lower mantle, in agreement with results from geodynamical calculations, melting processes at mid-ocean ridges, and subduction of chemically stratified lithosphere. Compared with preliminary reference Earth model (PREM) and seismic tomography models, our velocity models are generally faster in the upper transition zone (TZ) and slower in the lower TZ, implying a steeper velocity gradient. While less dense than PREM, density gradients in the TZ are also steeper. Mantle geotherms are generally adiabatic in the TZ, whereas in the upper part of the lower mantle, stronger lateral variations are observed. The retrieved anisotropy structure agrees with previous studies indicating positive as well as laterally varying upper mantle anisotropy, while there is little evidence for anisotropy in and below the TZ.

[1]  B. Romanowicz,et al.  Inferring the thermochemical structure of the upper mantle from seismic data , 2009 .

[2]  Jean-Paul Montagner,et al.  Reliability of mantle tomography models assessed by spectral element simulation , 2009 .

[3]  Takashi Nakagawa,et al.  Incorporating self‐consistently calculated mineral physics into thermochemical mantle convection simulations in a 3‐D spherical shell and its influence on seismic anomalies in Earth's mantle , 2009 .

[4]  L. Stixrude,et al.  Estimates of the transition zone temperature in a mechanically mixed upper mantle , 2009 .

[5]  Wenbo Xu,et al.  The effect of bulk composition and temperature on mantle seismic structure , 2008 .

[6]  S. Taylor,et al.  Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth's mantle , 2008 .

[7]  B. Kennett,et al.  Probability of radial anisotropy in the deep mantle , 2008 .

[8]  A. Dziewoński,et al.  Anisotropic shear‐wave velocity structure of the Earth's mantle: A global model , 2008 .

[9]  L. Boschi,et al.  On the statistical significance of correlations between synthetic mantle plumes and tomographic models , 2008 .

[10]  B. Kennett,et al.  Reply to comment by S. Crampin on ‘Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves’ , 2008 .

[11]  P. Tackley Geodynamics: Layer cake or plum pudding? , 2008 .

[12]  A. Dziewoński,et al.  Radially anisotropic shear velocity structure of the upper mantle globally and beneath North America , 2008 .

[13]  L. Stixrude,et al.  Influence of phase transformations on lateral heterogeneity and dynamics in Earth's mantle , 2007 .

[14]  F. Marone,et al.  Three-dimensional radial anisotropic structure of the North American upper mantle from inversion of surface waveform data , 2007 .

[15]  Insights into the nature of the transition zone from physically constrained inversion of long-period seismic data , 2007, Proceedings of the National Academy of Sciences.

[16]  J. Korenaga,et al.  Chemical composition of Earth's primitive mantle and its variance: 1. Method and results , 2007 .

[17]  J. Maclennan,et al.  Joint inversion of seismic and gravity data for lunar composition and thermal state , 2007 .

[18]  L. Stixrude 1.22 – Constraints on Seismic Models from Other Disciplines – Constraints from Mineral Physics on Seismological Models , 2007 .

[19]  R. Jeanloz,et al.  Constraints on seismic models from other disciplines - Constraints from mineral physics on seismological models , 2007 .

[20]  B. Romanowicz,et al.  Deep Earth Structure: Q of the Earth from Crust to Core , 2007 .

[21]  B. Steinberger,et al.  Models of large‐scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations , 2006 .

[22]  B. Romanowicz,et al.  A Three-Dimensional Radially-Anisotropic Model of Shear Velocity in the Whole Mantle , 2006 .

[23]  N. Olsen,et al.  Constraining the composition and thermal state of the mantle beneath Europe from inversion of long‐period electromagnetic sounding data , 2006 .

[24]  P. Shearer,et al.  Constraining seismic velocity and density for the mantle transition zone with reflected and transmitted waveforms , 2006 .

[25]  R. Hilst,et al.  Asthenospheric flow and origin of volcanism in the Baikal Rift area , 2006 .

[26]  K. Priestley,et al.  Multimode surface waveform tomography of the Pacific Ocean: a closer look at the lithospheric cooling signature , 2006 .

[27]  É. Beucler,et al.  Computation of Large Anisotropic Seismic Heterogeneities (CLASH) , 2006 .

[28]  Eleonore Stutzmann,et al.  Anisotropic structure of the African upper mantle from Rayleigh and Love wave tomography , 2006 .

[29]  G. Helffrich Heterogeneity in the mantle—its creation, evolution and destruction , 2006 .

[30]  G. Davies Gravitational depletion of the early Earth's upper mantle and the viability of early plate tectonics , 2006 .

[31]  J. Trampert,et al.  Radial anisotropy in seismic reference models of the mantle , 2006 .

[32]  L. Boschi,et al.  Databases of surface wave dispersion , 2005 .

[33]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[34]  L. Stixrude,et al.  Mineralogy and elasticity of the oceanic upper mantle: Origin of the low‐velocity zone , 2005 .

[35]  B. Kennett,et al.  Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia , 2005, Nature.

[36]  G. Nolet,et al.  Global upper‐mantle structure from finite‐frequency surface‐wave tomography , 2004 .

[37]  Joseph S. Resovsky,et al.  Probabilistic Tomography Maps Chemical Heterogeneities Throughout the Lower Mantle , 2004, Science.

[38]  P. Tackley,et al.  Evolution of Helium and Argon Isotopes in a Convecting Mantle: Physics of the Earth and Planetary In , 2004 .

[39]  J. Trampert,et al.  Probability density functions for radial anisotropy from fundamental mode surface wave data and the Neighbourhood Algorithm , 2004 .

[40]  Michael H. Ritzwoller,et al.  Thermodynamic constraints on seismic inversions , 2004 .

[41]  F. D. Stacey,et al.  High pressure equations of state with applications to the lower mantle and core , 2004 .

[42]  J. Trampert,et al.  Towards a lower mantle reference temperature and composition , 2004 .

[43]  Hendrik Jan van Heijst,et al.  Global transition zone tomography , 2004 .

[44]  B. Romanowicz,et al.  Inferences on Flow at the Base of Earth's Mantle Based on Seismic Anisotropy , 2004, Science.

[45]  B. Romanowicz,et al.  Global anisotropy and the thickness of continents , 2003, Nature.

[46]  J. Gerald,et al.  Grain-size-sensitive seismic wave attenuation in polycrystalline olivine , 2002 .

[47]  J. Connolly,et al.  Metamorphic controls on seismic velocity of subducted oceanic crust at 100–250 km depth , 2002 .

[48]  G. Helffrich Chemical and seismological constraints on mantle heterogeneity , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  É. Stutzmann,et al.  Anisotropic tomography of the Atlantic Ocean , 2002 .

[50]  M. Ritzwoller,et al.  Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle , 2002 .

[51]  Yu Jeffrey Gu,et al.  Global variability of transition zone thickness , 2002 .

[52]  L. Boschi,et al.  New images of the Earth's upper mantle from measurements of surface wave phase velocity anomalies , 2002 .

[53]  Lapo Boschi,et al.  A comparison of tomographic and geodynamic mantle models , 2002 .

[54]  J. Woodhouse,et al.  Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle , 2001, Science.

[55]  S. Karato,et al.  Water-Induced Fabric Transitions in Olivine , 2001, Science.

[56]  B. Wood,et al.  The Earth's mantle , 2001, Nature.

[57]  A. Dziewoński,et al.  Global Event Location with Full and Sparse Data Sets Using Three-dimensional Models of Mantle P-wave Velocity , 2001 .

[58]  Gabi Laske,et al.  The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure , 2013 .

[59]  B. Kennett,et al.  Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion , 2000 .

[60]  A. Dziewoński,et al.  Whole Earth tomography from delay times of P, PcP, and PKP phases: Lateral heterogeneities in the outer core or radial anisotropy in the mantle? , 2000 .

[61]  Lapo Boschi,et al.  High‐ and low‐resolution images of the Earth's mantle: Implications of different approaches to tomographic modeling , 1999 .

[62]  J. Tromp,et al.  Normal-mode and free-Air gravity constraints on lateral variations in velocity and density of Earth's mantle , 1999, Science.

[63]  M. Sambridge Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space , 1999 .

[64]  P. Shearer,et al.  A map of topography on the 410‐km discontinuity from PP precursors , 1999 .

[65]  M. Bosch Lithologic tomography: From plural geophysical data to lithology estimation , 1999 .

[66]  Harmen Bijwaard,et al.  Closing the gap between regional and global travel time tomography , 1998 .

[67]  Göran Ekström,et al.  The unique anisotropy of the Pacific upper mantle , 1998, Nature.

[68]  J. Lévêque,et al.  Anisotropy in the Indian Ocean upper mantle from Rayleigh- and Love-waveform inversion , 1998 .

[69]  S. Karato Seismic Anisotropy in the Deep Mantle, Boundary Layers and the Geometry of Mantle Convection , 1998 .

[70]  J. Montagner Where Can Seismic Anisotropy Be Detected in the Earth’s Mantle? In Boundary Layers... , 1998 .

[71]  Sri Widiyantoro,et al.  Global seismic tomography: A snapshot of convection in the Earth: GSA Today , 1997 .

[72]  McSween Hy,et al.  Evidence for Life in a Martian Meteorite , 1997 .

[73]  E. R. Engdahl,et al.  Evidence for deep mantle circulation from global tomography , 1997, Nature.

[74]  A. Hofmann,et al.  Mantle geochemistry: the message from oceanic volcanism , 1997, Nature.

[75]  B. Kennett,et al.  How to reconcile body-wave and normal-mode reference earth models , 1996 .

[76]  H. Mao,et al.  Elasticity of forsterite to 16 GPa and the composition of the upper mantle , 1995, Nature.

[77]  E. R. Engdahl,et al.  Constraints on seismic velocities in the Earth from traveltimes , 1995 .

[78]  A. Hofmann,et al.  Segregation of subducted oceanic crust in the convecting mantle , 1994 .

[79]  S. Grand Mantle shear structure beneath the Americas and surrounding oceans , 1994 .

[80]  S. Karato,et al.  Importance of anelasticity in the interpretation of seismic tomography , 1993 .

[81]  Love-Rayleigh wave incompatibility and possible deep upper mantle anisotropy in the Iberian peninsula , 1992 .

[82]  Guust Nolet,et al.  Tomographic imaging of subducted lithosphere below northwest Pacific island arcs , 1991, Nature.

[83]  M. Cara,et al.  Seismic Anisotropy in the Earth , 1991 .

[84]  E. Ito,et al.  Postspinel transformations in the system Mg2SiO4‐Fe2SiO4 and some geophysical implications , 1989 .

[85]  D. Forsyth,et al.  The anisotropic structure of the upper mantle in the Pacific , 1989 .

[86]  D. L. Anderson,et al.  Measurements of mantle wave velocities and inversion for lateral heterogeneities and anisotropy: 3. Inversion , 1986 .

[87]  D. L. Anderson,et al.  Mapping convection in the mantle , 1984 .

[88]  D. L. Anderson,et al.  Absorption band Q model for the Earth , 1982 .

[89]  D. L. Anderson,et al.  Upper mantle anisotropy - Evidence from free oscillations , 1982 .

[90]  A. Tarantola,et al.  Inverse problems = Quest for information , 1982 .

[91]  J. M. Brown,et al.  Thermodynamic parameters in the Earth as determined from seismic profiles , 1981 .

[92]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[93]  Donald W. Forsyth The Early Structural Evolution and Anisotropy of the Oceanic Upper Mantle , 1975 .

[94]  A. Ringwood Composition and petrology of the earth's mantle , 1975 .

[95]  T. V. McEvilly,et al.  Central U.S. crust—Upper mantle structure from Love and Rayleigh wave phase velocity inversion , 1964 .

[96]  Don L. Anderson,et al.  Elastic wave propagation in layered anisotropic media , 1961 .

[97]  W.,et al.  Absorption Band Q Model for the Earth , 2022 .