An extensible interface for QM/MM molecular dynamics simulations with AMBER

We present an extensible interface between the AMBER molecular dynamics (MD) software package and electronic structure software packages for quantum mechanical (QM) and mixed QM and classical molecular mechanical (MM) MD simulations within both mechanical and electronic embedding schemes. With this interface, ab initio wave function theory and density functional theory methods, as available in the supported electronic structure software packages, become available for QM/MM MD simulations with AMBER. The interface has been written in a modular fashion that allows straight forward extensions to support additional QM software packages and can easily be ported to other MD software. Data exchange between the MD and QM software is implemented by means of files and system calls or the message passing interface standard. Based on extensive tests, default settings for the supported QM packages are provided such that energy is conserved for typical QM/MM MD simulations in the microcanonical ensemble. Results for the free energy of binding of calcium ions to aspartate in aqueous solution comparing semiempirical and density functional Hamiltonians are shown to demonstrate features of this interface. © 2013 Wiley Periodicals, Inc.

[1]  Aatto Laaksonen,et al.  On the effect of Lennard-Jones parameters on the quantum mechanical and molecular mechanical coupling in a hybrid molecular dynamics simulation of liquid water , 1999 .

[2]  J. Kästner Umbrella sampling , 2011 .

[3]  Ross C Walker,et al.  Implementation of the SCC-DFTB method for hybrid QM/MM simulations within the amber molecular dynamics package. , 2007, The journal of physical chemistry. A.

[4]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[5]  U. Singh,et al.  A combined ab initio quantum mechanical and molecular mechanical method for carrying out simulations on complex molecular systems: Applications to the CH3Cl + Cl− exchange reaction and gas phase protonation of polyethers , 1986 .

[6]  Shawn T. Brown,et al.  Advances in methods and algorithms in a modern quantum chemistry program package. , 2006, Physical chemistry chemical physics : PCCP.

[7]  Message Passing Interface Forum MPI: A message - passing interface standard , 1994 .

[8]  Christine M Isborn,et al.  Electronic Absorption Spectra from MM and ab initio QM/MM Molecular Dynamics: Environmental Effects on the Absorption Spectrum of Photoactive Yellow Protein. , 2012, Journal of chemical theory and computation.

[9]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[10]  Weizhong Zeng,et al.  Structural Insight into the Ion-Exchange Mechanism of the Sodium/Calcium Exchanger , 2012, Science.

[11]  Pedro Alexandrino Fernandes,et al.  Computational enzymatic catalysis--clarifying enzymatic mechanisms with the help of computers. , 2012, Physical chemistry chemical physics : PCCP.

[12]  Qiang Cui,et al.  Importance of van der Waals Interactions in QM/MM Simulations. , 2004, The journal of physical chemistry. B.

[13]  Hannes H. Loeffler,et al.  A QM–MM interface between CHARMM and TURBOMOLE: Implementation and application to systems in bulk phase and biologically active systems , 2003, J. Comput. Chem..

[14]  M. Karplus,et al.  A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations , 1990 .

[15]  Hugh Nymeyer,et al.  Atomic Simulations of Protein Folding, Using the Replica Exchange Algorithm , 2004, Numerical Computer Methods, Part D.

[16]  Noam Bernstein,et al.  Hybrid atomistic simulation methods for materials systems , 2009 .

[17]  C. Tanford Macromolecules , 1994, Nature.

[18]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 3. Analytical Energy Gradients, Geometry Optimization, and First Principles Molecular Dynamics. , 2009, Journal of chemical theory and computation.

[19]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[20]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[21]  Lucas Visscher,et al.  Toward a Practical Method for Adaptive QM/MM Simulations. , 2009, Journal of chemical theory and computation.

[22]  B. Roux The calculation of the potential of mean force using computer simulations , 1995 .

[23]  Indiana University-Purdue,et al.  Theory and Applications of Computational Chemistry The First Forty Years , 2005 .

[24]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[25]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[26]  S. C. Rogers,et al.  QUASI: A general purpose implementation of the QM/MM approach and its application to problems in catalysis , 2003 .

[27]  Ivan S Ufimtsev,et al.  Quantum Chemistry on Graphical Processing Units. 2. Direct Self-Consistent-Field Implementation. , 2009, Journal of chemical theory and computation.

[28]  G. Voth,et al.  Flexible simple point-charge water model with improved liquid-state properties. , 2006, The Journal of chemical physics.

[29]  A. W. Götz,et al.  Application of Adaptive QM/MM Methods to Molecular Dynamics Simulations of Aqueous Systems. , 2012, Journal of chemical theory and computation.

[30]  Ross C. Walker,et al.  An overview of the Amber biomolecular simulation package , 2013 .

[31]  Susanne Hertz,et al.  Advances in Quantum Chemistry , 2019, Quantum Systems in Physics, Chemistry and Biology - Theory, Interpretation, and Results.

[32]  Milan Hodošček,et al.  A Hybrid QM−MM Potential Employing Hartree−Fock or Density Functional Methods in the Quantum Region , 1999 .

[33]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[34]  R. Swendsen,et al.  THE weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method , 1992 .

[35]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[36]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[37]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[38]  Rui Zhang,et al.  The QM‐MM interface for CHARMM‐deMon , 2010, J. Comput. Chem..

[39]  D. Truhlar,et al.  QM/MM: what have we learned, where are we, and where do we go from here? , 2007 .

[40]  D. Ceperley Path integrals in the theory of condensed helium , 1995 .

[41]  Martin J. Field,et al.  A generalized-born solvation model for macromolecular hybrid-potential calculations , 2002 .

[42]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[43]  Frank Neese,et al.  The ORCA program system , 2012 .

[44]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[45]  Darrin M York,et al.  An Efficient Linear-Scaling Ewald Method for Long-Range Electrostatic Interactions in Combined QM/MM Calculations. , 2005, Journal of chemical theory and computation.

[46]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[47]  Pär Söderhjelm,et al.  On the Convergence of QM/MM Energies. , 2011, Journal of chemical theory and computation.

[48]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[49]  John M Herbert,et al.  Accelerated, energy-conserving Born-Oppenheimer molecular dynamics via Fock matrix extrapolation. , 2005, Physical chemistry chemical physics : PCCP.

[50]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[51]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[52]  Johannes Grotendorst,et al.  Modern methods and algorithms of quantum chemistry , 2000 .

[53]  R. Friesner,et al.  Ab initio quantum chemical and mixed quantum mechanics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. , 2005, Annual review of physical chemistry.

[54]  Kenneth M. Merz,et al.  An examination of a density functional/molecular mechanical coupled potential , 1995, J. Comput. Chem..

[55]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[56]  M. Levitt,et al.  Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. , 1976, Journal of molecular biology.

[57]  J. Stewart Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements , 2007, Journal of molecular modeling.

[58]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[59]  Alessandro Laio,et al.  “Site Binding” of Ca2+ Ions to Polyacrylates in Water: A Molecular Dynamics Study of Coiling and Aggregation , 2007 .

[60]  A Mitsutake,et al.  Generalized-ensemble algorithms for molecular simulations of biopolymers. , 2000, Biopolymers.

[61]  S. Papson “Model” , 1981 .

[62]  Ross C. Walker,et al.  The implementation of a fast and accurate QM/MM potential method in Amber , 2008, J. Comput. Chem..

[63]  Byung Jin Mhin,et al.  Ab initio studies of the water dimer using large basis sets: The structure and thermodynamic energies , 1992 .

[64]  Paul Tavan,et al.  A hybrid method for solutes in complex solvents: Density functional theory combined with empirical force fields , 1999 .

[65]  Donald G. Truhlar,et al.  Parameterization of NDDO wavefunctions using genetic algorithms. An evolutionary approach to parameterizing potential energy surfaces and direct dynamics calculations for organic reactions , 1995 .

[66]  Wilfred F. van Gunsteren,et al.  Interfacing the GROMOS (bio)molecular simulation software to quantum‐chemical program packages , 2012, J. Comput. Chem..

[67]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[68]  Takuya Okamoto,et al.  A minimal implementation of the AMBER–GAUSSIAN interface for ab initio QM/MM‐MD simulation , 2011, J. Comput. Chem..

[69]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[70]  D. Truhlar,et al.  Quantum mechanical methods for enzyme kinetics. , 2003, Annual review of physical chemistry.

[71]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[72]  Kenneth M. Merz,et al.  An Examination of a Hartree-Fock/Molecular Mechanical Coupled Potential , 1995 .

[73]  Larry A. Curtiss,et al.  Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity , 1979 .

[74]  W. C. Still,et al.  Semianalytical treatment of solvation for molecular mechanics and dynamics , 1990 .

[75]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[76]  J. G. Snijders,et al.  Towards an order-N DFT method , 1998 .

[77]  John S. Muenter,et al.  Microwave spectrum and structure of hydrogen bonded water dimer , 1974 .

[78]  Dennis R. Salahub,et al.  A combined density functional and molecular dynamics simulation of a quantum water molecule in aqueous solution , 1994 .

[79]  Walter Thiel,et al.  QM/MM methods for biomolecular systems. , 2009, Angewandte Chemie.

[80]  P K Biswas,et al.  A regularized and renormalized electrostatic coupling Hamiltonian for hybrid quantum-mechanical-molecular-mechanical calculations. , 2005, The Journal of chemical physics.

[81]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[82]  Bernard R. Brooks,et al.  Interfacing Q‐Chem and CHARMM to perform QM/MM reaction path calculations , 2007, J. Comput. Chem..

[83]  W. Thiel,et al.  Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches , 1996 .

[84]  Mark S. Gordon,et al.  Chapter 41 – Advances in electronic structure theory: GAMESS a decade later , 2005 .

[85]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[86]  Erik Deumens,et al.  Software Integration in Multi-scale Simulations: the PUPIL System , 2006 .

[87]  H. Berendsen,et al.  Interaction Models for Water in Relation to Protein Hydration , 1981 .

[88]  D. York,et al.  Specific Reaction Parametrization of the AM1/d Hamiltonian for Phosphoryl Transfer Reactions:  H, O, and P Atoms. , 2007, Journal of chemical theory and computation.

[89]  Peter Pulay,et al.  Fock matrix dynamics , 2004 .

[90]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[91]  Ulf Ryde,et al.  The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations , 1996, J. Comput. Aided Mol. Des..

[92]  Anthony Skjellum,et al.  A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard , 1996, Parallel Comput..

[93]  Alessandro Laio,et al.  A Hamiltonian electrostatic coupling scheme for hybrid Car-Parrinello molecular dynamics simulations , 2002 .