Optical quantum nondemolition measurement of a single rare earth ion qubit

Optically-interfaced spins in the solid state are a promising platform for quantum technologies. A crucial component of these systems is high-fidelity, projective measurement of the spin state. Here, we demonstrate single-shot spin readout of a single rare earth ion qubit, Er 3+ , which is attractive for its telecom-wavelength optical transition and compatibility with silicon nanophotonic circuits. In previous work with laser-cooled atoms and ions, and solid-state defects, spin readout is accomplished using fluorescence on an optical cycling transition; however, Er 3+ and other rare earth ions generally lack strong cycling transitions. We demonstrate that modifying the electromagnetic environment around the ion can increase the strength and cyclicity of the optical transition by several orders of magnitude, enabling single-shot quantum nondemolition readout of the ion’s spin with 94.6% fidelity. We use this readout to probe coherent dynamics and relaxation of the spin. Individually addressed rare earth atoms in solid crystals are an emerging platform for quantum information processing. Here the authors demonstrate a key requirement, by realizing single-shot, quantum non-demolition measurements of the spin of single Er 3+ ions in Y 2 SiO 5 crystals with nearly 95% fidelity.

[1]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[2]  R. Zia,et al.  Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths , 2012, 1208.2642.

[3]  V. Sandoghdar,et al.  Spectroscopic detection and state preparation of a single praseodymium ion in a crystal , 2013, Nature Communications.

[4]  M. K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[5]  Manjin Zhong,et al.  Optically addressable nuclear spins in a solid with a six-hour coherence time , 2015, Nature.

[6]  A. Yacoby,et al.  A robust, scanning quantum system for nanoscale sensing and imaging , 2011, 1108.4437.

[7]  M. Siegel,et al.  Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. , 2012, Physical Review Letters.

[8]  Christian Schneider,et al.  Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength , 2012, Nature.

[9]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[10]  Raymond G. Beausoleil,et al.  Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond , 2008 .

[11]  C. Thiel,et al.  Magnetic g tensors for the 4I15∕ 2 and 4I13∕ 2 states of Er3+:Y2SiO5 , 2008 .

[12]  Rufus L. Cone,et al.  Magnetic G Tensors for the I 15/2 4 and I 13/2 4 States of Er3+: Y2 Si O5 , 2008 .

[13]  Takeshi Ohshima,et al.  Isolated electron spins in silicon carbide with millisecond coherence times. , 2014, Nature materials.

[14]  E. Waks,et al.  Cavity-Enhanced Optical Readout of a Single Solid-State Spin , 2017, 1706.05582.

[15]  R Hanson,et al.  Universal control and error correction in multi-qubit spin registers in diamond. , 2013, Nature nanotechnology.

[16]  Ronald Hanson,et al.  Quantum technologies with optically interfaced solid-state spins , 2018, Nature Photonics.

[17]  Mihir K. Bhaskar,et al.  An integrated diamond nanophotonics platform for quantum-optical networks , 2016, Science.

[18]  M. Lukin,et al.  Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout. , 2017, Physical review letters.

[19]  M. Markham,et al.  Observation of an environmentally insensitive solid-state spin defect in diamond , 2017, Science.

[20]  Matthew J. Sellars,et al.  Optical addressing of an individual erbium ion in silicon , 2013, Nature.

[21]  D. J. Twitchen,et al.  A Ten-Qubit Solid-State Spin Register with Quantum Memory up to One Minute , 2019, Physical Review X.

[22]  Andrei Faraon,et al.  Optically Addressing Single Rare-Earth Ions in a Nanophotonic Cavity. , 2018, Physical review letters.

[23]  Rufus L. Cone,et al.  Effects of Magnetic Field Orientation on Optical Decoherence in Er3+: Y2 SiO5 , 2009 .

[24]  L. Veissier,et al.  Optical study of the anisotropic erbium spin flip-flop dynamics , 2018, Physical Review B.

[25]  L. Hollenberg,et al.  Sensing electric fields using single diamond spins , 2011, 1103.3432.

[26]  L. Jiang,et al.  Quantum entanglement between an optical photon and a solid-state spin qubit , 2010, Nature.

[27]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[28]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[29]  E. Togan,et al.  Observation of entanglement between a quantum dot spin and a single photon , 2012, Nature.

[30]  A. Dibos,et al.  Atomic Source of Single Photons in the Telecom Band. , 2017, Physical review letters.

[31]  S. Fujiyoshi,et al.  Spectroscopy of single Pr3+ ion in LaF3 crystal at 1.5 K , 2014, Scientific Reports.

[32]  B. Hensen,et al.  High-fidelity projective read-out of a solid-state spin quantum register , 2011, Nature.

[33]  Philip J. T. Woodburn,et al.  Electron Spin Coherence in Optically Excited States of Rare-Earth Ions for Microwave to Optical Quantum Transducers. , 2018, Physical review letters.

[34]  D. Meschede,et al.  Hidden Markov model of atomic quantum jump dynamics in an optically probed cavity , 2014 .

[35]  A. Imamoğlu,et al.  Observation of quantum jumps of a single quantum dot spin using submicrosecond single-shot optical readout. , 2013, Physical review letters.

[36]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[37]  J. Thompson,et al.  Atomic Source of Single Photons in the Telecom Band. , 2018, Physical review letters.

[38]  A. Abragam,et al.  Electron paramagnetic resonance of transition ions , 1970 .

[39]  J. Wrachtrup,et al.  Coherent properties of single rare-earth spin qubits , 2014, Nature Communications.

[40]  D. Wineland,et al.  High-fidelity adaptive qubit detection through repetitive quantum nondemolition measurements. , 2007, Physical review letters.

[41]  I. Kurkin,et al.  EPR and spin-lattice relaxation of rare-earth activated centres in Y2SiO5 single crystals , 1980 .

[42]  M. Sellars,et al.  Engineering closed optical transitions in rare-earth ion crystals , 2016 .