ORTHOGONAL POLYNOMIALS AND CUBATURE FORMULAE ON SPHERES AND ON BALLS

Orthogonal polynomials on the unit sphere in RRd+1 and on the unit ball in RRd are shown to be closely related to each other for symmetric weight functions. Furthermore, it is shown that a large class of cubature formulae on the unit sphere can be derived from those on the unit ball and vice versa. The results provide a new approach to study orthogonal polynomials and cubature formulae on spheres.

[1]  Charles F. Dunkl,et al.  Differential-difference operators associated to reflection groups , 1989 .

[2]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[3]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[4]  Charles F. Dunkl,et al.  Integral Kernels with Reflection Group Invariance , 1991, Canadian Journal of Mathematics.

[5]  Hermann Engles,et al.  Numerical quadrature and cubature , 1980 .

[6]  Morris Weisfeld,et al.  Orthogonal polynomials in several variables , 1959, Numerische Mathematik.

[7]  Yuan Xu,et al.  Orthogonal Polynomials for a Family of Product Weight Functions on the Spheres , 1997, Canadian Journal of Mathematics.

[8]  Yuan Xu Common zeros of polynomials in several variables and higher dimensional quadrature , 2020 .

[9]  J. Korevaar,et al.  Chebyshev-type quadrature on multidimensional domains , 1994 .

[10]  H. M. Möller,et al.  Kubaturformeln mit minimaler Knotenzahl , 1976 .

[11]  Yuan Xu,et al.  On multivariate orthogonal polynomials , 1993 .

[12]  C. Dunkl Reflection groups and orthogonal polynomials on the sphere , 1988 .

[13]  B. Reznick Sums of Even Powers of Real Linear Forms , 1992 .

[14]  Yuan Xu,et al.  Summability of Fourier orthogonal series for Jacobi weight on a ball in ℝ , 1999 .

[15]  W. Miller,et al.  Families of orthogonal and biorthogonal polynomials on the N -sphere , 1991 .

[16]  Yu. I. Lyubich,et al.  Isometric embed-dings between classical Banach spaces, cubature formulas, and spherical designs , 1993 .

[17]  H. M. Möller,et al.  Lower Bounds for the Number of Nodes in Cubature Formulae , 1979 .

[18]  H. Engels,et al.  Numerical Quadrature and Cubature , 1980 .

[19]  P. Appell,et al.  Fonctions hypergéométriques et hypersphériques : polynomes d'Hermite , 1926 .

[20]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[21]  Intertwining operators associated to the group , 1995 .

[22]  E. Stein,et al.  Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .

[23]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[24]  J. J. Seidel,et al.  Isometric embeddings and geometric designs , 1994, Discret. Math..