Artificial neural network and classical least-squares methods for neurotransmitter mixture analysis

[1]  F. J. Holler,et al.  Principles of Instrumental Analysis , 1973 .

[2]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[3]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[4]  S. Asher UV resonance Raman studies of molecular structure and dynamics: applications in physical and biophysical chemistry. , 1988, Annual review of physical chemistry.

[5]  Jonathan A. Stamford,et al.  In vivo voltammetry — prospects for the next decade , 1989, Trends in Neurosciences.

[6]  M. Morris,et al.  Surface-enhanced Raman (SERS) probes of neurotransmitters , 1990 .

[7]  J. González-Mora,et al.  Mathematical resolution of mixed in vivo voltammetry signals Models, equipment, assessment by simultaneous microdialysis sampling , 1991, Journal of Neuroscience Methods.

[8]  Paul J. Gemperline,et al.  Nonlinear multivariate calibration using principal components regression and artificial neural networks , 1991 .

[9]  M. D. Goldfinger,et al.  HPLC-EC determination of free primary amino acid concentrations in cat cisternal cerebrospinal fluid , 1991, Journal of Neuroscience Methods.

[10]  R. Efremov,et al.  Quantitative Treatment of UV Resonance Raman Spectra of Biological Molecules: Application to the Study of Membrane-Bound Proteins , 1991 .

[11]  Shiv k. Sharma,et al.  Determination of Low Concentrations of the Azo-Dye Complex of Nitrite in Fresh Water and Seawater Using Surface-Enhanced Resonance Raman Spectroscopy (SERRS) , 1992 .

[12]  R. L. Benson,et al.  Improvements in the Generation of Quasi-Continuous, Tunable Ultraviolet Excitation for Raman Spectroscopy: Applications to Drug/Nucleotide Interactions , 1992 .

[13]  Kazutoshi Tanabe,et al.  Neural Network System for the Identification of Infrared Spectra , 1992 .

[14]  Ramasamy Manoharan,et al.  UV Resonance Raman Spectra of Bacillus Spores , 1992 .

[15]  Bart Kosko,et al.  Neural networks for signal processing , 1992 .

[16]  H. H. Thodberg,et al.  Optimal minimal neural interpretation of spectra , 1992 .

[17]  Ramasamy Manoharan,et al.  UV Resonance Raman Studies of Bacteria , 1992 .

[18]  D X Wang,et al.  Fast learning in a backpropagation algorithm with a sine-type thresholding function. , 1992, Applied optics.

[19]  Sukhan Lee,et al.  Supervised learning with Gaussian potentials , 1992 .

[20]  Chris W. Brown,et al.  Near-Infrared Mixture Identification by an Automated Library Searching Method: A Multivariate Approach , 1992 .

[21]  Relationship between digital filtering and multivariate regression in quantitative analysis , 1992 .

[22]  C. K. Chong,et al.  Resonance Raman Spectroscopic Detection System for Liquid Chromatography , 1992 .

[23]  Belle R. Upadhyaya,et al.  Chemometric Data Analysis Using Artificial Neural Networks , 1993 .

[24]  D.R. Hush,et al.  Progress in supervised neural networks , 1993, IEEE Signal Processing Magazine.

[25]  Ramasamy Manoharan,et al.  Comparison of the UV Resonance Raman Spectra of Bacteria, Bacterial Cell Walls, and Ribosomes Excited in the Deep UV , 1993 .

[26]  H. Georg Schulze,et al.  Characteristics of Backpropagation Neural Networks Employed in the Identification of Neurotransmitter Raman Spectra , 1994 .