In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain

We created a volumetric template of the marmoset (Callithrix jacchus) brain, which enables localization of the cortical areas defined in the Paxinos et al. (The marmoset brain in stereotaxic coordinates. Elsevier Academic Press, Cambridge, 2012) marmoset brain atlas, as well as seven broader cortical regions (occipital, temporal, parietal, prefrontal, motor, limbic, insular), different brain compartments (white matter, gray matter, cerebro-spinal fluid including ventricular spaces), and various other structures (brain stem, cerebellum, olfactory bulb, hippocampus). The template was designed from T1-weighted MR images acquired using a 3 T MRI scanner. It was based on a single fully segmented marmoset brain image, which was transported onto the mean of 13 adult marmoset brain images using a diffeomorphic strategy that fully preserves the brain topology. In addition, we offer an automatic segmentation pipeline which fully exploits the proposed template. The segmentation pipeline was quantitatively assessed by comparing the results of manual and automated segmentations. An associated program, written in Python, can be used from a command-line interface, or used interactively as a module of the 3DSlicer software. This program can be applied to the analysis of multimodal images, to map specific cortical areas in lesions or to define the seeds for further tractography analyses.

[1]  David A. Leopold,et al.  Marmosets: A Neuroscientific Model of Human Social Behavior , 2016, Neuron.

[2]  David A. Leopold,et al.  The marmoset monkey as a model for visual neuroscience , 2015, Neuroscience Research.

[3]  S. Tardif,et al.  Reproduction in captive common marmosets (Callithrix jacchus). , 2003, Comparative medicine.

[4]  Piotr Majka,et al.  Towards a comprehensive atlas of cortical connections in a primate brain: Mapping tracer injection studies of the common marmoset into a reference digital template , 2016, The Journal of comparative neurology.

[5]  A. Iriki,et al.  Current models of the marmoset brain , 2015, Neuroscience Research.

[6]  J R Wolff,et al.  Pre‐ and postnatal development of the primary visual cortex of the common marmoset. II. Formation, remodelling, and elimination of synapses as overlapping processes , 1993, The Journal of comparative neurology.

[7]  Piotr Majka,et al.  3D Brain Atlas Reconstructor Service—Online Repository of Three-Dimensional Models of Brain Structures , 2013, Neuroinformatics.

[8]  Michael Petrides,et al.  The marmoset brain in stereotaxic coordinates , 2012 .

[9]  Afonso C. Silva Anatomical and functional neuroimaging in awake, behaving marmosets , 2017, Developmental neurobiology.

[10]  K. Zilles,et al.  Parcellation of the frontal cortex of the New World monkey Callithrix jacchus by eight neurotransmitter-binding sites , 1995, Anatomy and Embryology.

[11]  Cory T. Miller,et al.  Social Context-Dependent Activity in Marmoset Frontal Cortex Populations during Natural Conversations , 2017, The Journal of Neuroscience.

[12]  J R Wolff,et al.  Developmental biology of the common marmoset: proposal for a "postnatal staging". , 1992, Journal of medical primatology.

[13]  Leo L. Lui,et al.  Functional response properties of neurons in the dorsomedial visual area of New World monkeys (Callithrix jacchus). , 2006, Cerebral cortex.

[14]  A. C. Cuello,et al.  The brain of the common marmoset (Callithrix jacchus) a stereotaxic atlas H. Stephan,G. Baron &W. K. Schwerdtfeger. 1980. Springer-Verlag, Berlin. 5 figs., 3 tab., 73 plates. V 91 pages. Cloth DM 168,-; approx. US $94.10 , 1981, Neuroscience.

[15]  Daniel Rueckert,et al.  Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation , 2011, International Journal of Computer Vision.

[16]  Charles Watson,et al.  Mini-atlas of the marmoset brain , 2015, Neuroscience Research.

[17]  Sophia Bakola,et al.  Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: Connectionally distinct subdivisions of the lateral premotor cortex , 2015, The Journal of comparative neurology.

[18]  R. Colman,et al.  Aspects of common marmoset basic biology and life history important for biomedical research. , 2003, Comparative medicine.

[19]  Chihiro Yokoyama,et al.  Mapping of serotonin transporters by positron emission tomography with [11c]DASB in conscious common marmosets: Comparison with rhesus monkeys , 2010, Synapse.

[20]  Sophia Bakola,et al.  Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey , 2014, The Journal of comparative neurology.

[21]  Erika Sasaki,et al.  Prospects for genetically modified non-human primate models, including the common marmoset , 2015, Neuroscience Research.

[22]  J. Fuster Frontal lobe and cognitive development , 2002, Journal of neurocytology.

[23]  Samuel G. Solomon,et al.  A simpler primate brain: the visual system of the marmoset monkey , 2014, Front. Neural Circuits..

[24]  Marcello G P Rosa,et al.  Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). , 2006, Cerebral cortex.

[25]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[26]  E T Bullmore,et al.  Trajectories and Milestones of Cortical and Subcortical Development of the Marmoset Brain From Infancy to Adulthood , 2018, Cerebral cortex.

[27]  Y. Yamaguchi,et al.  Brain/MINDS: A Japanese National Brain Project for Marmoset Neuroscience , 2016, Neuron.

[28]  Allan Hanbury,et al.  Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool , 2015, BMC Medical Imaging.

[29]  Kathleen J. Burman,et al.  The cortical motor system of the marmoset monkey (Callithrix jacchus) , 2015, Neuroscience Research.

[30]  Albert J. Vilella,et al.  The Common Marmoset Genome Provides Insight into Primate Biology and Evolution , 2014, Nature Genetics.

[31]  P. Girard,et al.  Cognitive impairment in a young marmoset reveals lateral ventriculomegaly and a mild hippocampal atrophy: a case report , 2015, Scientific Reports.

[32]  Patrick T. Hickey,et al.  Postmortem diffusion MRI of the human brainstem and thalamus for deep brain stimulator electrode localization , 2015, Human brain mapping.

[33]  Nicholas A. Bock,et al.  Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging , 2009, Journal of Neuroscience Methods.

[34]  D. Louis Collins,et al.  Brain templates and atlases , 2012, NeuroImage.

[35]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[36]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[37]  Atsushi Takemoto,et al.  Individual variability in visual discrimination and reversal learning performance in common marmosets , 2015, Neuroscience Research.

[38]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[39]  Vivien Marx,et al.  Neurobiology: learning from marmosets , 2016, Nature Methods.

[40]  J R Wolff,et al.  Pre‐ and postnatal development of the primary visual cortex of the common marmoset. I. A changing space for synaptogenesis , 1993, The Journal of comparative neurology.

[41]  Marcello G P Rosa,et al.  Subcortical projections to the frontal pole in the marmoset monkey , 2011, The European journal of neuroscience.

[42]  Nicholas Ayache,et al.  Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach , 2008, MICCAI.

[43]  David A. Leopold,et al.  Functional magnetic resonance imaging of auditory cortical fields in awake marmosets , 2017, NeuroImage.

[44]  J. Fuster The Prefrontal Cortex—An Update Time Is of the Essence , 2001, Neuron.

[45]  Gunther Helms,et al.  Visualizing dopamine transporter integrity with iodine-123-FP-CIT SPECT in combination with high resolution MRI in the brain of the common marmoset monkey , 2012, Journal of Neuroscience Methods.

[46]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[47]  Kazuhiko Seki,et al.  Transgenic Monkey Model of the Polyglutamine Diseases Recapitulating Progressive Neurological Symptoms , 2017, eNeuro.

[48]  E. Koechlin,et al.  Managing competing goals — a key role for the frontopolar cortex , 2017, Nature Reviews Neuroscience.

[49]  Katsuki Nakamura,et al.  Stereotaxic Atlas of the Marmoset Brain , 2010 .

[50]  Ravi S. Menon,et al.  Frontoparietal Functional Connectivity in the Common Marmoset , 2016, Cerebral cortex.

[51]  Paul H. E. Tiesinga,et al.  The Scalable Brain Atlas: Instant Web-Based Access to Public Brain Atlases and Related Content , 2013, Neuroinformatics.

[52]  Justin C. Sanchez,et al.  Common marmoset (Callithrix jacchus) as a primate model for behavioral neuroscience studies , 2017, Journal of Neuroscience Methods.

[53]  Judith M Burkart,et al.  Marmosets as model species in neuroscience and evolutionary anthropology , 2015, Neuroscience Research.

[54]  John D. Newman,et al.  A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus , 2009, Brain Research Reviews.

[55]  Piotr Majka,et al.  Common Atlas Format and 3D Brain Atlas Reconstructor: Infrastructure for Constructing 3D Brain Atlases , 2012, Neuroinformatics.

[56]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[57]  Thomas J. Ross,et al.  Functional Connectivity Hubs and Networks in the Awake Marmoset Brain , 2016, Front. Integr. Neurosci..

[58]  L A Krubitzer,et al.  The organization and connections of somatosensory cortex in marmosets , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[59]  Atsushi Iriki,et al.  The Brain/MINDS 3D digital marmoset brain atlas , 2018, Scientific Data.

[60]  J. Feldon,et al.  Performance of the marmoset monkey on computerized tasks of attention and working memory. , 2004, Brain research. Cognitive brain research.

[61]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[62]  Tsang-Wei Tu,et al.  Imaging of Spontaneous Ventriculomegaly and Vascular Malformations in Wistar Rats: Implications for Preclinical Research , 2014, Journal of neuropathology and experimental neurology.

[63]  L. Cohen,et al.  Longitudinal deformation models, spatial regularizations and learning strategies to quantify Alzheimer's disease progression , 2014, NeuroImage: Clinical.

[64]  Darryl D. Holm,et al.  Diffeomorphic Atlas Estimation using Geodesic Shooting on Volumetric Images , 2012 .

[65]  Håkon Grydeland,et al.  Organizing Principles of Human Cortical Development--Thickness and Area from 4 to 30 Years: Insights from Comparative Primate Neuroanatomy. , 2016, Cerebral cortex.

[66]  P. Mitra,et al.  Brain-mapping projects using the common marmoset , 2015, Neuroscience Research.

[67]  Leo L. Lui,et al.  Development of non‐phosphorylated neurofilament protein expression in neurones of the New World monkey dorsolateral frontal cortex , 2007, The European journal of neuroscience.

[68]  D. Pandya,et al.  The cortical connectivity of the prefrontal cortex in the monkey brain , 2012, Cortex.

[69]  C. Ferris,et al.  Neural Effects of MDMA as Determined by Functional Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in Awake Marmoset Monkeys , 2006, Annals of the New York Academy of Sciences.

[70]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[71]  Michela Gamberini,et al.  Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas , 2006, The Journal of comparative neurology.

[72]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[73]  Naokazu Goda,et al.  Mirror Neurons in a New World Monkey, Common Marmoset , 2015, Front. Neurosci..

[74]  Ian J. Rowland,et al.  Positron emission tomography assessment of 8-OH-DPAT-mediated changes in an index of cerebral glucose metabolism in female marmosets , 2012, NeuroImage.