LR B-Splines implementation in the Altair RadiossTM solver for explicit dynamics IsoGeometric Analysis
暂无分享,去创建一个
Thomas Elguedj | Salim Bouabdallah | Matthieu Occelli | Lionel Morançay | T. Elguedj | S. Bouabdallah | L. Morançay | Matthieu Occelli
[1] Alessandro Reali,et al. Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .
[2] Lei Zhang,et al. Une approche isogéométrique pour la thermo-mécanique en grandes transformations dans un contexte multiphysique à objets , 2015 .
[3] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[4] Andrea Bressan,et al. Some properties of LR-splines , 2013, Comput. Aided Geom. Des..
[5] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[6] T. Hughes,et al. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .
[7] Knut Gaarder Rakvåg,et al. An experimental study on the deformation and fracture modes of steel projectiles during impact , 2013 .
[8] Ping Wang,et al. Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..
[9] Arnaud Duval,et al. abqNURBS: implémentation d'éléments isogéométriques dans Abaqus et outils de pré- et post-traitement dédiés , 2015 .
[10] Christian Hesch,et al. Hierarchical NURBS in frictionless contact , 2016 .
[11] Thomas J. R. Hughes,et al. Truncated T-splines: Fundamentals and methods , 2017 .
[12] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[13] Bert Jüttler,et al. THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .
[14] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[15] Yuri Bazilevs,et al. Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .
[16] David J. Benson,et al. Stable time step estimation for multi-material Eulerian hydrocodes , 1998 .
[17] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[18] Alessandro Reali,et al. GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..
[19] Peter Wriggers,et al. Contact treatment in isogeometric analysis with NURBS , 2011 .
[20] Trond Kvamsdal,et al. Isogeometric analysis using LR B-splines , 2014 .
[21] T. Hughes,et al. Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .
[22] Michel Rochette,et al. Isogeometric analysis-suitable trivariate NURBS models from standard B-Rep models , 2016 .
[23] Thomas J. R. Hughes,et al. Isogeometric analysis of nearly incompressible large strain plasticity , 2014 .
[24] Peter Wriggers,et al. Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .
[25] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[26] Stefan Hartmann,et al. Mass scaling and stable time step estimates for isogeometric analysis , 2015 .
[27] Xin Li,et al. Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.
[28] Xilu Wang,et al. An optimization approach for constructing trivariate B-spline solids , 2014, Comput. Aided Des..
[29] W. Wall,et al. Isogeometric structural shape optimization , 2008 .
[30] Bert Jüttler,et al. Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..
[31] Stéphane Bordas,et al. Extended Isogeometric Analysis for Strong and Weak Discontinuities , 2015 .
[32] Manfred Bischoff,et al. A weighted point-based formulation for isogeometric contact , 2016 .
[33] John A. Evans,et al. Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.
[34] Xiaodong Wei,et al. Handling Extraordinary Nodes with Weighted T-spline Basis Functions , 2015 .
[35] Daniel Rypl,et al. From the finite element analysis to the isogeometric analysis in an object oriented computing environment , 2012, Adv. Eng. Softw..
[36] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[37] Nicholas S. North,et al. T-spline simplification and local refinement , 2004, SIGGRAPH 2004.
[38] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[39] Kevin G. Wang,et al. Dynamic implosion of underwater cylindrical shells: Experiments and Computations , 2013 .
[40] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[41] Hendrik Speleers,et al. Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..
[42] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[43] Bert Jüttler,et al. Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.
[44] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[45] Ted Belytschko,et al. Eigenvalues and Stable Time Steps for the Uniform Strain Hexahedron and Quadrilateral , 1984 .
[46] M. Pauletti,et al. Istituto di Matematica Applicata e Tecnologie Informatiche “ Enrico Magenes ” , 2014 .
[47] Thomas J. R. Hughes,et al. Blended isogeometric shells , 2013 .
[48] Les A. Piegl,et al. The NURBS book (2nd ed.) , 1997 .
[49] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[50] A. Gravouil,et al. Towards an automatic isogeometric analysis suitable trivariate models generation—Application to geometric parametric analysis , 2017 .
[51] Yongjie Zhang,et al. Integrating CAD with Abaqus: A practical isogeometric analysis software platform for industrial applications , 2017, Comput. Math. Appl..
[52] Jia Lu,et al. Isogeometric contact analysis: Geometric basis and formulation for frictionless contact , 2011 .
[53] Manfred Bischoff,et al. A point to segment contact formulation for isogeometric, NURBS based finite elements , 2013 .
[54] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[55] Lei Liu,et al. Weighted T-splines with application in reparameterizing trimmed NURBS surfaces , 2015 .
[56] Ming Li,et al. Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization , 2017, ArXiv.
[57] Thomas J. R. Hughes,et al. A large deformation, rotation-free, isogeometric shell , 2011 .
[58] Trond Kvamsdal,et al. On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .
[59] Wing Kam Liu,et al. Nonlinear Finite Elements for Continua and Structures , 2000 .
[60] Tore Børvik,et al. A numerical study on the deformation and fracture modes of steel projectiles during Taylor bar impact tests , 2014 .
[61] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[62] T. Hughes,et al. Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .
[63] Jiansong Deng,et al. Modified T-splines , 2013, Comput. Aided Geom. Des..
[64] Thomas J. R. Hughes,et al. Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .
[65] Helmut Pottmann,et al. The geometry of Tchebycheffian splines , 1993, Comput. Aided Geom. Des..
[66] Bert Jüttler,et al. A hierarchical construction of LR meshes in 2D , 2015, Comput. Aided Geom. Des..
[67] Alessandro Reali,et al. Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .