LR B-Splines implementation in the Altair RadiossTM solver for explicit dynamics IsoGeometric Analysis

Abstract IsoGeometric Analysis has shown to be a very promising tool for an integrated design and analysis process. A challenging task is still to move IGA from a proof of concept to a convenient design tool for industry and this work contributes to this endeavor. This paper deals with the implementation of the IGA concept into Altair Radioss finite element solver in order to address crash and stamping simulation applications. To this end, the necessary ingredients to a smooth integration of IGA in a traditional finite element code have been identified and adapted to the existing code architecture. A solid B-Spline element has been developed in Altair Radioss and then, an existing contact interface has been extended in order to work seamlessly with both NURBS and Lagrange finite elements. As local refinement is needed for solution approximation, an analysis is made in terms of analysis suitability and implementation aspects for several Spline technologies. The Locally Refined B-Spline (LRBS) technology is implemented and is validated on industrial benchmarks, for validation cases conventionally used for industrial codes like stamping and drop test.

[1]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[2]  Lei Zhang,et al.  Une approche isogéométrique pour la thermo-mécanique en grandes transformations dans un contexte multiphysique à objets , 2015 .

[3]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[4]  Andrea Bressan,et al.  Some properties of LR-splines , 2013, Comput. Aided Geom. Des..

[5]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[6]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[7]  Knut Gaarder Rakvåg,et al.  An experimental study on the deformation and fracture modes of steel projectiles during impact , 2013 .

[8]  Ping Wang,et al.  Adaptive isogeometric analysis using rational PHT-splines , 2011, Comput. Aided Des..

[9]  Arnaud Duval,et al.  abqNURBS: implémentation d'éléments isogéométriques dans Abaqus et outils de pré- et post-traitement dédiés , 2015 .

[10]  Christian Hesch,et al.  Hierarchical NURBS in frictionless contact , 2016 .

[11]  Thomas J. R. Hughes,et al.  Truncated T-splines: Fundamentals and methods , 2017 .

[12]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[13]  Bert Jüttler,et al.  THB-splines: An effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis , 2016 .

[14]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[15]  Yuri Bazilevs,et al.  Rotation free isogeometric thin shell analysis using PHT-splines , 2011 .

[16]  David J. Benson,et al.  Stable time step estimation for multi-material Eulerian hydrocodes , 1998 .

[17]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[18]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[19]  Peter Wriggers,et al.  Contact treatment in isogeometric analysis with NURBS , 2011 .

[20]  Trond Kvamsdal,et al.  Isogeometric analysis using LR B-splines , 2014 .

[21]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[22]  Michel Rochette,et al.  Isogeometric analysis-suitable trivariate NURBS models from standard B-Rep models , 2016 .

[23]  Thomas J. R. Hughes,et al.  Isogeometric analysis of nearly incompressible large strain plasticity , 2014 .

[24]  Peter Wriggers,et al.  Three-dimensional mortar-based frictional contact treatment in isogeometric analysis with NURBS , 2012 .

[25]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[26]  Stefan Hartmann,et al.  Mass scaling and stable time step estimates for isogeometric analysis , 2015 .

[27]  Xin Li,et al.  Hierarchical T-splines: Analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis , 2014, 1404.4346.

[28]  Xilu Wang,et al.  An optimization approach for constructing trivariate B-spline solids , 2014, Comput. Aided Des..

[29]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[30]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[31]  Stéphane Bordas,et al.  Extended Isogeometric Analysis for Strong and Weak Discontinuities , 2015 .

[32]  Manfred Bischoff,et al.  A weighted point-based formulation for isogeometric contact , 2016 .

[33]  John A. Evans,et al.  Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.

[34]  Xiaodong Wei,et al.  Handling Extraordinary Nodes with Weighted T-spline Basis Functions , 2015 .

[35]  Daniel Rypl,et al.  From the finite element analysis to the isogeometric analysis in an object oriented computing environment , 2012, Adv. Eng. Softw..

[36]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[37]  Nicholas S. North,et al.  T-spline simplification and local refinement , 2004, SIGGRAPH 2004.

[38]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[39]  Kevin G. Wang,et al.  Dynamic implosion of underwater cylindrical shells: Experiments and Computations , 2013 .

[40]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[41]  Hendrik Speleers,et al.  Strongly stable bases for adaptively refined multilevel spline spaces , 2014, Adv. Comput. Math..

[42]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[43]  Bert Jüttler,et al.  Algorithms and Data Structures for Truncated Hierarchical B-splines , 2012, MMCS.

[44]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[45]  Ted Belytschko,et al.  Eigenvalues and Stable Time Steps for the Uniform Strain Hexahedron and Quadrilateral , 1984 .

[46]  M. Pauletti,et al.  Istituto di Matematica Applicata e Tecnologie Informatiche “ Enrico Magenes ” , 2014 .

[47]  Thomas J. R. Hughes,et al.  Blended isogeometric shells , 2013 .

[48]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[49]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[50]  A. Gravouil,et al.  Towards an automatic isogeometric analysis suitable trivariate models generation—Application to geometric parametric analysis , 2017 .

[51]  Yongjie Zhang,et al.  Integrating CAD with Abaqus: A practical isogeometric analysis software platform for industrial applications , 2017, Comput. Math. Appl..

[52]  Jia Lu,et al.  Isogeometric contact analysis: Geometric basis and formulation for frictionless contact , 2011 .

[53]  Manfred Bischoff,et al.  A point to segment contact formulation for isogeometric, NURBS based finite elements , 2013 .

[54]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[55]  Lei Liu,et al.  Weighted T-splines with application in reparameterizing trimmed NURBS surfaces , 2015 .

[56]  Ming Li,et al.  Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization , 2017, ArXiv.

[57]  Thomas J. R. Hughes,et al.  A large deformation, rotation-free, isogeometric shell , 2011 .

[58]  Trond Kvamsdal,et al.  On the similarities and differences between Classical Hierarchical, Truncated Hierarchical and LR B-splines , 2015 .

[59]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[60]  Tore Børvik,et al.  A numerical study on the deformation and fracture modes of steel projectiles during Taylor bar impact tests , 2014 .

[61]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[62]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[63]  Jiansong Deng,et al.  Modified T-splines , 2013, Comput. Aided Geom. Des..

[64]  Thomas J. R. Hughes,et al.  Isogeometric shell analysis: The Reissner-Mindlin shell , 2010 .

[65]  Helmut Pottmann,et al.  The geometry of Tchebycheffian splines , 1993, Comput. Aided Geom. Des..

[66]  Bert Jüttler,et al.  A hierarchical construction of LR meshes in 2D , 2015, Comput. Aided Geom. Des..

[67]  Alessandro Reali,et al.  Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations , 2013 .