Gradient histogram: Thresholding in a region of interest for edge detection

Selecting a threshold from the gradient histogram, a histogram of gradient magnitudes, of an image plays a crucial role in a gradient based edge detection system. This paper presents a methodology to determine the threshold from a gradient histogram generated using any kind of linear gradient operator on an image. We consider the image as a random process with dependent samples, model the gradient histogram using theories of random process and random input to a system, and determine a region of interest in the gradient histogram using certain properties of a probability density function. Standard histogram thresholding techniques are then used within the region of interest to get the threshold value. To obtain the edges, this threshold value is then used as the upper threshold of the hysteresis thresholding technique that follows the non-maximum suppression operation applied on the gradient magnitude image. The proposed methodology of determining a threshold in a gradient histogram is deduced through rigorous analysis and hence it helps in achieving consistently appreciable edge detection performance. Experimental results using different real-life and benchmark images are shown to demonstrate the effectiveness of the proposed technique.

[1]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[2]  Paul L. Rosin Edges: saliency measures and automatic thresholding , 1997, Machine Vision and Applications.

[3]  C. A. Murthy,et al.  Thresholding in edge detection: a statistical approach , 2004, IEEE Transactions on Image Processing.

[4]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  J. Goodman Speckle Phenomena in Optics: Theory and Applications , 2020 .

[6]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[7]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[8]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Peter de Souza,et al.  Edge detection using sliding statistical tests , 1983, Comput. Vis. Graph. Image Process..

[10]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[11]  Joon Hee Han,et al.  Ambiguity distance: an edge evaluation measure using fuzziness of edges , 2002, Fuzzy Sets Syst..

[12]  Kim L. Boyer,et al.  On Optimal Infinite Impulse Response Edge Detection Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Suchendra M. Bhandarkar,et al.  An edge detection technique using local smoothing and statistical hypothesis testing , 1996, Pattern Recognit. Lett..

[14]  I.E. Abdou,et al.  Quantitative design and evaluation of enhancement/thresholding edge detectors , 1979, Proceedings of the IEEE.

[15]  Sankar K. Pal,et al.  Thresholding for edge detection using human psychovisual phenomena , 1986, Pattern Recognit. Lett..

[16]  Sankar K. Pal,et al.  On Edge Detection of X-Ray Images Using Fuzzy Sets , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Farzin Deravi,et al.  Variation of ISEF edge detector , 2003 .

[18]  Thomas O. Binford,et al.  On Detecting Edges , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Simon Haykin,et al.  Communication Systems , 1978 .

[20]  Rae-Hong Park,et al.  Automatic edge extraction using locally adaptive threshold , 1988 .

[21]  Wen-Hsiang Tsai,et al.  Moment-preserving thresolding: A new approach , 1985, Comput. Vis. Graph. Image Process..

[22]  E. Lehmann,et al.  Testing Statistical Hypothesis. , 1960 .

[23]  J. Canny Finding Edges and Lines in Images , 1983 .

[24]  Amar Aggoun,et al.  Edge detection using local histogram analysis , 1998 .

[25]  Wen-Hsiang Tsai,et al.  Moment-preserving thresholding: a new approach , 1995 .

[26]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[27]  Josef Kittler,et al.  Optimal Edge Detectors for Ramp Edges , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Yusen Dong,et al.  Comparison of radar image segmentation by Gaussian- and Gamma-Markov random field models , 2003 .

[29]  David M. Chelberg,et al.  Automatic gradient threshold determination for edge detection , 1996, IEEE Trans. Image Process..

[30]  Sankar K. Pal,et al.  Histogram Thresholding using Beam Theory and Ambiguity Measures , 2007, Fundam. Informaticae.

[31]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Sandip Sarkar,et al.  A possible mechanism of zero-crossing detection using the concept of the extended classical receptive field of retinal ganglion cells , 2005, Biological Cybernetics.

[33]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[34]  Paul L. Rosin Unimodal thresholding , 2001, Pattern Recognit..

[35]  Robert M. Haralick,et al.  Gradient threshold selection using the facet model , 1988, Pattern Recognit..

[36]  Mitra Basu,et al.  Gaussian-based edge-detection methods - a survey , 2002, IEEE Trans. Syst. Man Cybern. Part C.

[37]  Sudeep Sarkar,et al.  Robust Visual Method for Assessing the Relative Performance of Edge-Detection Algorithms , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Irwin Edward Sobel,et al.  Camera Models and Machine Perception , 1970 .

[39]  Peter Smith,et al.  Engineering Applications of Stochastic Processes: Theory, Problems and Solutions , 1989 .

[40]  Sudeep Sarkar,et al.  Comparison of edge detectors: a methodology and initial study , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[41]  S. Rice Mathematical analysis of random noise , 1944 .

[42]  Jun Shen,et al.  An optimal linear operator for step edge detection , 1992, CVGIP Graph. Model. Image Process..

[43]  David G. Stork,et al.  Pattern Classification , 1973 .

[44]  Sean Dougherty,et al.  Edge Detector Evaluation Using Empirical ROC Curves , 2001, Comput. Vis. Image Underst..

[45]  Aarnout Brombacher,et al.  Probability... , 2009, Qual. Reliab. Eng. Int..

[46]  M. Abidi,et al.  Detection and classification of edges in color images , 2005, IEEE Signal Processing Magazine.

[47]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[48]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[49]  Jitendra Malik,et al.  Learning to detect natural image boundaries using local brightness, color, and texture cues , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[50]  Xavier Descombes,et al.  Estimating Gaussian Markov random field parameters in a nonstationary framework: application to remote sensing imaging , 1999, IEEE Trans. Image Process..

[51]  J. Kittler,et al.  Adaptive estimation of hysteresis thresholds , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  John F. Haddon,et al.  Generalised threshold selection for edge detection , 1988, Pattern Recognit..

[53]  M.N.S. Swamy,et al.  Unbiased homomorphic system and its application in reducing multiplicative noise , 2006 .