Inverse optimal stabilization of a rigid spacecraft

The authors present an approach for constructing optimal feedback control laws for regulation of a rotating rigid spacecraft. They employ the inverse optimal control approach which circumvents the task of solving a Hamilton-Jacobi equation and results in a controller optimal with respect to a meaningful cost functional. The inverse optimality approach requires the knowledge of a control Lyapunov function and a stabilizing control law of a particular form. For the spacecraft problem, they are both constructed using the method of integrator backstepping. The authors give a characterization of (nonlinear) stability margins achieved with the inverse optimal control law.

[1]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[2]  R. C. Thompson,et al.  Survey of time-optimal attitude maneuvers , 1994 .

[3]  M. Athans,et al.  On the optimal angular velocity control of asymmetrical space vehicles , 1969 .

[4]  C. K. CARRINGTON,et al.  Optimal nonlinear feedback control for spacecraft attitude maneuvers , 1983 .

[5]  S. Glad On the gain margin of nonlinear and optimal regulators , 1984, 1982 21st IEEE Conference on Decision and Control.

[6]  John L. Junkins,et al.  New results on the optimal spacecraft attitude maneuver problem , 1984 .

[7]  M. Shuster A survey of attitude representation , 1993 .

[8]  S. Bharadwaj,et al.  Achieving good performance in global attitude stabilization , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[9]  P. Falb,et al.  Time-, fuel-, and energy-optimal control of nonlinear norm-invariant systems , 1963 .

[10]  Giacomo Porcelli Optimal attitude control of a dual-spin satellite , 1968 .

[11]  Olav Egeland,et al.  State feedback H∞-suboptimal control of a rigid spacecraft , 1997, IEEE Trans. Autom. Control..

[12]  Randy A. Freeman,et al.  Robust Nonlinear Control Design , 1996 .

[13]  N.U. Ahmed,et al.  Nonlinear Optimal Feedback Regulation of Satellite Angular Monenta , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[14]  R. Freeman,et al.  Robust Nonlinear Control Design: State-Space and Lyapunov Techniques , 1996 .

[15]  Panagiotis Tsiotras,et al.  Spin-axis stabilization of symmetric spacecraft with two control torques , 1994 .

[16]  K. S. P. Kumar,et al.  Stabilization of a Satellite via Specific Optimum Control , 1966, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Mario A. Rotea,et al.  Optimal Control of Rigid Body Angular Velocity with Quadratic Cost , 1996 .

[18]  M. Fadali,et al.  Single step optimization of feedback-decoupled spacecraft attitude manuevers , 1985, 1985 24th IEEE Conference on Decision and Control.

[19]  R.A. Freeman,et al.  Optimal nonlinear controllers for feedback linearizable systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[20]  T. Windeknecht Optimal stabilization of rigid body attitude , 1963 .

[21]  Wei Kang,et al.  Nonlinear H∞ control and its application to rigid spacecraft , 1995, IEEE Trans. Autom. Control..

[22]  O. Egeland,et al.  State feedback H∞-suboptimal control of a rigid spacecraft , 1997, IEEE Trans. Autom. Control..

[23]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[24]  A. Isidori,et al.  Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems , 1991 .

[25]  E D Sontag,et al.  FURTHER COMMENTS ON STABILIZABILITY OF THE ANGULAR VELOCITY OF A RIGID BODY REVISITED , 1989 .

[26]  Panagiotis Tsiotras On the optimal regulation of an axi-symmetric rigid body with two controls , 1996 .

[27]  J. Etter,et al.  A solution of the time-optimal Euler rotation problem , 1989 .

[28]  Mario A. Rotea,et al.  Suboptimal Control of Rigid Body Motion with a Quadratic Cost , 1998 .

[29]  B. Anderson,et al.  Nonlinear regulator theory and an inverse optimal control problem , 1973 .

[30]  Haim Weiss,et al.  Quarternion feedback regulator for spacecraft eigenaxis rotations , 1989 .

[31]  D. Bernstein,et al.  Nonlinear feedback control with global stabilization , 1995 .

[32]  Malcolm D. Shuster Survey of attitude representations , 1993 .

[33]  J. Junkins,et al.  Time-Optimal Magnetic Attitude Maneuvers , 1981 .

[34]  Eduardo Sontag,et al.  Further comments on the stabilizability of the angular velocity of a rigid body , 1989 .

[35]  J. E. Potter,et al.  Fuel Optimal Reorientation of Axisymmetric Spacecraft , 1970 .

[36]  Houria Bourdache-Siguerdidjane,et al.  Further results on the optimal regulation of spacecraft angular momentum , 1991 .

[37]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[38]  K. Kumar On the Optimum Stabilization of a Satellite , 1965, IEEE Transactions on Aerospace and Electronic Systems.

[39]  Srinivas R. Vadali,et al.  Quasi-Closed-Form Solution to the Time-Optimal Rigid Spacecraft Reorientation Problem , 1993 .

[40]  Yiing-Yuh Lin,et al.  Enhanced techniques for solving the two-point boundary-value problem associated with the optimal attitude control of spacecraft , 1989 .

[41]  P. Tsiotras Stabilization and optimality results for the attitude control problem , 1996 .