Chapter 11 Cell types using glutamate as a neurotransmitter in the vertebrate retina

The goal of this review is to summarize the evidence for glutamate as the neurotransmitter of 6 major retinal cell types; rods, cones, ON bipolar cells, OFF bipolar cells, rod bipolar cells and ganglion cells

[1]  L. Nowak,et al.  Magnesium gates glutamate-activated channels in mouse central neurones , 1984, Nature.

[2]  R. Miller,et al.  Bipolar origin of synaptic inputs to sustained OFF-ganglion cells in the mudpuppy retina. , 1988, Journal of neurophysiology.

[3]  I. Módy,et al.  NMDA receptors of dentate gyrus granule cells participate in synaptic transmission following kindling , 1987, Nature.

[4]  S. Lipton,et al.  Central mammalian neurons normally resistant to glutamate toxicity are made sensitive by elevated extracellular Ca2+: toxicity is blocked by the N-methyl-D-aspartate antagonist MK-801. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Massey,et al.  Excitatory amino acid receptors of rod- and cone-driven horizontal cells in the rabbit retina. , 1987, Journal of neurophysiology.

[6]  R. Marc,et al.  Uptake of aspartic and glutamic acid by photoreceptors in goldfish retina. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[7]  R. Altschuler,et al.  Aspartate aminotransferase‐like immunoreactivity in the guinea pig and monkey retinas , 1985, The Journal of comparative neurology.

[8]  M. Slaughter,et al.  An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. , 1983, Science.

[9]  D. Copenhagen,et al.  Multiple classes of glutamate receptor on depolarizing bipolar cells in retina , 1987, Nature.

[10]  J. Dowling,et al.  Dopamine decreases conductance of the electrical junctions between cultured retinal horizontal cells. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Kaneko,et al.  L-glutamate-induced depolarization in solitary photoreceptors: a process that may contribute to the interaction between photoreceptors in situ. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Massey,et al.  Inhibition of aspartate release from the retina of the an aesthetised rabbit by stimulation with light flashes , 1979, Neuroscience Letters.

[13]  R. Werman,et al.  A review — critical for idenctification of a central nervous system transmitter , 1966 .

[14]  C. Sinton,et al.  CGS 19755, a selective and competitive N-methyl-D-aspartate-type excitatory amino acid receptor antagonist. , 1988, The Journal of pharmacology and experimental therapeutics.

[15]  E. V. Famiglietti,et al.  On and off pathways through amacrine cells in mammalian retina: The synaptic connections of “starburst” amacrine cells , 1983, Vision Research.

[16]  L. Vyklický,et al.  The action of excitatory amino acids on chick spinal cord neurones in culture. , 1987, The Journal of physiology.

[17]  J Toyoda,et al.  Application of transretinal current stimulation for the study of bipolar-amacrine transmission , 1984, The Journal of general physiology.

[18]  L. Iversen,et al.  The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Guidotti,et al.  The activation of inositol phospholipid metabolism as a signal- transducing system for excitatory amino acids in primary cultures of cerebellar granule cells , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  H. Wässle,et al.  Pharmacological modulation of on and off ganglion cells in the cat retina , 1984, Neuroscience.

[21]  S. Massey,et al.  N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. , 1990, Journal of neurophysiology.

[22]  S. Cull-Candy,et al.  Multiple-conductance channels activated by excitatory amino acids in cerebellar neurons , 1987, Nature.

[23]  R. Dacheux,et al.  Photoreceptor-bipolar cell transmission in the perfused retina eyecup of the mudpuppy. , 1976, Science.

[24]  M. Slaughter,et al.  2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. , 1981, Science.

[25]  R L Winslow,et al.  Functional role of spines in the retinal horizontal cell network. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. B. Langdon,et al.  Pharmacology of retinotectal transmission in the goldfish: effects of nicotinic ligands, strychnine, and kynurenic acid , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  M. Mayer,et al.  Concanavalin A selectively reduces desensitization of mammalian neuronal quisqualate receptors. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[28]  J. Yang,et al.  AMPA, kainate, and quisqualate activate a common receptor-channel complex on embryonic chick motoneurons , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[29]  J. Dowling,et al.  Carp horizontal cells in culture respond selectively to L-glutamate and its agonists. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[30]  John E. Dowling,et al.  Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells , 1987, Nature.

[31]  A. Ishida,et al.  D-aspartate potentiates the effects of L-glutamate on horizontal cells in goldfish retina. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Dacheux,et al.  The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  S. Yazulla Stimulation of GABA release from retinal horizontal cells by potassium and acidic amino acid agonists , 1983, Brain Research.

[34]  M. Slaughter,et al.  A Reflection of ON Bipolar Cell Activity , 1989 .

[35]  L. Snell,et al.  Structural requirements for activation of the glycine receptor that modulates the N-methyl-D-aspartate operated ion channel. , 1988, European journal of pharmacology.

[36]  D. I. Vaney Morphological identification of serotonin-accumulating neurons in the living retina. , 1986, Science.

[37]  Richard H. Masland,et al.  The cholinergic amacrine cell , 1986, Trends in Neurosciences.

[38]  A. Karschin,et al.  The interaction of agonists and noncompetitive antagonists at the excitatory amino acid receptors in rat retinal ganglion cells in vitro , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  John E. Dowling,et al.  Enhancement of kainate-gated currents in retinal horizontal cells by cyclic AMP-dependent protein kinase , 1989, Brain Research.

[40]  M. Mayer,et al.  The action of N‐methyl‐D‐aspartic acid on mouse spinal neurones in culture. , 1985, The Journal of physiology.

[41]  J. Dowling,et al.  Roles of aspartate and glutamate in synaptic transmission in rabbit retina. II. Inner plexiform layer. , 1985, Journal of neurophysiology.

[42]  A. L. Byzov,et al.  Electrical properties of subsynaptic and nonsynaptic membranes of horizontal cells in fish retina , 1974 .

[43]  C. Cotman,et al.  Anatomical distributions of four pharmacologically distinct 3H-L-glutamate binding sites , 1983, Nature.

[44]  Malcolm M. Slaughter,et al.  Bipolar cells in the mudpuppy retina use an excitatory amino acid neurotransmitter , 1983, Nature.

[45]  D. A. Godfrey,et al.  Distributions of aspartate aminotransferase and malate dehydrogenase activities in rat retinal layers. , 1985, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[46]  P. Wood,et al.  CGS 19755 is a potent and competitive antagonist at NMDA-type receptors. , 1988, European journal of pharmacology.

[47]  J. Dowling,et al.  Effects of d-aspartate on excitatory amino acid-induced release of [3H]GABA from goldfish retina , 1986, Brain Research.

[48]  R. Masland,et al.  A system of indoleamine-accumulating neurons in the rabbit retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  M. Piccolino,et al.  Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3':5'-monophosphate in horizontal cells of turtle retina , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[50]  R. Grantyn,et al.  Separation of quisqualate- and kainate-selective glutamate receptors in cultured neurons from the rat superior colliculus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Malcolm M. Slaughter,et al.  Excitatory amino acid receptors of the retina: diversity of subtypes and conductance mechanisms , 1986, Trends in Neurosciences.

[52]  R. Miller,et al.  A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[53]  P. Lukasiewicz,et al.  Synaptic transmission at N‐methyl‐D‐aspartate receptors in the proximal retina of the mudpuppy. , 1985, The Journal of physiology.

[54]  J. Watkins,et al.  Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord , 1982, Brain Research.

[55]  H. Wässle,et al.  Pharmacological modulation of the rod pathway in the cat retina. , 1988, Journal of neurophysiology.

[56]  J. Bolz,et al.  Localization of aspartate aminotransferase and cytochrome oxidase in the cat retina , 1985, Neuroscience Letters.

[57]  G. Westbrook,et al.  Slow excitatory postsynaptic currents mediated by N‐methyl‐D‐aspartate receptors on cultured mouse central neurones. , 1988, The Journal of physiology.

[58]  L. Iversen,et al.  7-Chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-D-aspartate receptor complex. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Dowling,et al.  Responsiveness and receptive field size of carp horizontal cells are reduced by prolonged darkness and dopamine. , 1985, Science.

[60]  M. Mayer,et al.  The physiology of excitatory amino acids in the vertebrate central nervous system , 1987, Progress in Neurobiology.

[61]  G. Fagg,et al.  Acidic amino acid binding sites in mammalian neuronal membranes: their characteristics and relationship to synaptic receptors , 1984, Brain Research Reviews.

[62]  K Naka,et al.  Functional organization of catfish retina. , 1977, Journal of neurophysiology.

[63]  T. Voigt,et al.  Analysis of a glycinergic inhibitory pathway in the cat retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[64]  Helga Kolb,et al.  A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina , 1975, Brain Research.

[65]  S. Massey,et al.  The effects of 2-amino-4-phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina , 1983, Vision Research.

[66]  A. Guidotti,et al.  Excitatory amino acid receptors coupled with guanylate cyclase in primary cultures of cerebellar granule cells , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  Rf Miller,et al.  Characterization of an extended glutamate receptor of the on bipolar neuron in the vertebrate retina , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  E. A. Schwartz,et al.  Evidence for the identification of synaptic transmitters released by photoreceptors of the toad retina. , 1983, The Journal of physiology.

[69]  J. Dowling,et al.  Effect of Magnesium on Horizontal Cell Activity in the Skate Retina , 1973, Nature.

[70]  P. Usherwood,et al.  Spider toxins as tools for dissecting elements of excitatory amino acid transmission , 1988, Trends in Neurosciences.

[71]  Stephen J. Smith,et al.  NMDA-receptor activation increases cytoplasmic calcium concentration in cultured spinal cord neurones , 1986, Nature.

[72]  R F Miller,et al.  Synaptic inputs and morphology of sustained ON-ganglion cells in the mudpuppy retina. , 1988, Journal of neurophysiology.

[73]  P. Usherwood,et al.  Structure and synthesis of a potent glutamate receptor antagonist in wasp venom. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[74]  R. Dacheux,et al.  Horizontal cells in the retina of the rabbit , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[75]  T. Bliss,et al.  NMDA receptors - their role in long-term potentiation , 1987, Trends in Neurosciences.

[76]  Rf Miller,et al.  The role of excitatory amino acid transmitters in the mudpuppy retina: an analysis with kainic acid and N-methyl aspartate , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[77]  G. Collingridge,et al.  Frequency-dependent involvement of NMDA receptors in the hippocampus: a novel synaptic mechanism , 1986, Nature.

[78]  R. Wenthold,et al.  Aspartate aminotransferase-like immunoreactivity as a marker for aspartate/glutamate in guinea pig photoreceptors , 1982, Nature.

[79]  Malcolm M. Slaughter,et al.  Identification of a distinct synaptic glutamate receptor on horizontal cells in mudpuppy retina , 1985, Nature.

[80]  Scott J. Daly,et al.  The effects of continuous superfusion of l-aspartate and l-glutamate on horizontal cells of the turtle retina , 1986, Vision Research.

[81]  M. Slaughter,et al.  B-wave of the electroretinogram. A reflection of ON bipolar cell activity , 1989, The Journal of general physiology.

[82]  S. Bloomfield,et al.  A physiological and morphological study of the horizontal cell types of the rabbit retina , 1982, The Journal of comparative neurology.

[83]  P. Herrling,et al.  CPP, a new potent and selective NMDA antagonist. Depression of central neuron responses, affinity for [3H]d-AP5 binding sites on brain membranes and anticonvulsant activity , 1986, Brain Research.

[84]  Satoru Kato,et al.  Dopamine modulates S-potential amplitude and dye-coupling between external horizontal cells in carp retina , 1983, Nature.

[85]  Rf Miller,et al.  Do N-methyl-D-aspartate receptors mediate synaptic responses in the mudpuppy retina? , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[86]  Y. Claustre,et al.  L-glutamate increases internal free calcium levels in synaptoneurosomes from immature rat brain via quisqualate receptors , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[87]  J. Bockaert,et al.  A new mechanism for glutamate receptor action: phosphoinositide hydrolysis , 1988, Trends in Neurosciences.

[88]  A. Ganong,et al.  Action of 3-((±)-2-car☐ypiperazin-4-yl)-propyl-1-phosphonic aci (CPP): a new and highly potent antagonist of N-methyl-d-aspartate receptors in the hippocampus , 1986, Brain Research.

[89]  S. M. Wu,et al.  Effects of CNQX, APB, PDA, and kynurenate on horizontal cells of the tiger salamander retina , 1989, Visual Neuroscience.

[90]  P Mobbs,et al.  Membrane Currents in Retinal Bipolar Cells of the Axolotl , 2003 .

[91]  M. Mayer,et al.  High concentrations of N-acetylaspartylglutamate (NAAG) selectively activate NMDA receptors on mouse spinal cord neurons in cell culture , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  S. Yazulla Evoked efflux of [3H]GABA from goldfish retina in the dark , 1985, Brain Research.

[93]  M. Tachibana,et al.  Permeability changes induced by L‐glutamate in solitary retinal horizontal cells isolated from Carassius auratus. , 1985, The Journal of physiology.

[94]  D. Attwell,et al.  Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells , 1987, Nature.

[95]  Teruya Ohtsuka,et al.  Effects of aspartate and glutamate on the bipolar cells in the carp retina , 1975, Vision Research.

[96]  R. Dacheux,et al.  Excitatory dyad synapse in rabbit retina. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[97]  J. Dowling,et al.  Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[98]  S N Davies,et al.  Quinoxalinediones: potent competitive non-NMDA glutamate receptor antagonists. , 1988, Science.

[99]  J. Wu,et al.  L-glutamate: a neurotransmitter candidate for cone photoreceptors in the monkey retina , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[100]  M. Neal,et al.  The effect of 2-amino-4-phosphonobutyrate (APB) on acetylcholine release from the rabbit retina: Evidence for on-channel input to cholinergic amacrine cells , 1981, Neuroscience Letters.

[101]  A. Ganong,et al.  Excitatory amino acid synaptic mechanisms and neurological function , 1986 .

[102]  A. Hamberger,et al.  Glutamate as transmitter of hippocampal perforant path , 1977, Nature.

[103]  A. Ganong,et al.  Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity. , 1988, Annual review of neuroscience.

[104]  S. Massey,et al.  The release of acetylcholine and amino acids from the rabbit retina in vivo , 1980, Neurochemistry International.

[105]  J. Olney,et al.  Excitotoxity and the NMDA receptor , 1987, Trends in Neurosciences.

[106]  A. Ganong,et al.  Effects of excitatory amino acid antagonists on evoked and spontaneous excitatory potentials in guinea‐pig hippocampus. , 1986, The Journal of physiology.

[107]  P. Ascher,et al.  Glycine potentiates the NMDA response in cultured mouse brain neurons , 1987, Nature.

[108]  T. Salt,et al.  Mediation of thalamic sensory input by both NMDA receptors and non-NMDA receptors , 1986, Nature.

[109]  P. H. Schiller Central connections of the retinal ON and OFF pathways , 1982, Nature.

[110]  S. Sharma,et al.  Substance P-immunoreactive retinal ganglion cells and their central axon terminals in the rabbit , 1987, Nature.

[111]  L. Iversen,et al.  Excitatory amino acids in the brain - focus on NMDA receptors , 1987, Trends in Neurosciences.

[112]  J. Toyoda,et al.  Analysis of synaptic inputs to on-off amacrine cells of the carp retina , 1988, The Journal of general physiology.

[113]  D. Lam,et al.  L-glutamic acid: a neurotransmitter candidate for cone photoreceptors in human and rat retinas. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[114]  R. O’Brien,et al.  Excitatory synaptic transmission between interneurons and motoneurons in chick spinal cord cell cultures , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  J. Olney,et al.  D-aminaphosphonovalerate is 100-fold more powerful than D-alpha-aminoadipate in blocking N-methylaspartate neurotoxicity , 1981, Brain Research.

[116]  C. Grossman,et al.  Kynurenic acid antagonises responses to NMDA via an action at the strychnine-insensitive glycine receptor. , 1988, European journal of pharmacology.

[117]  J. Watkins,et al.  L-Glutamate has higher affinity than other amino acids for [3H]-D-AP5 binding sites in rat brain membranes , 1984, Nature.

[118]  J. Dowling,et al.  On the sensitivity of H1 horizontal cells of the carp retina to glutamate, aspartate and their agonists , 1984, Brain Research.

[119]  R. Dacheux,et al.  Horizontal cells in the retina of the rabbit , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[120]  P. Sterling Microcircuitry of the cat retina. , 1983, Annual review of neuroscience.

[121]  G. Collingridge,et al.  Excitatory amino acids in synaptic transmission in the Schaffer collateral‐commissural pathway of the rat hippocampus. , 1983, The Journal of physiology.

[122]  B. Christensen,et al.  A voltage-clamp study of isolated stingray horizontal cell non-NMDA excitatory amino acid receptors. , 1989, Journal of neurophysiology.

[123]  C. K. Mitchell,et al.  AP4 inhibits chloride-dependent binding and uptake of [3H]glutamate in rabbit retina , 1988, Brain Research.

[124]  J. Dowling,et al.  Responses of isolated white perch horizontal cells to changes in the concentration of photoreceptor transmitter agonists , 1989, Brain Research.

[125]  S. Massey,et al.  Transmitter circuits in the vertebrate retina , 1987, Progress in Neurobiology.

[126]  D. Copenhagen,et al.  Release of endogenous glutamate from isolated cone photoreceptors of the lizard. , 1989, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[127]  T. Honoré,et al.  New quinoxalinediones show potent antagonism of quisqualate responses in cultured mouse cortical neurons , 1988, Neuroscience Letters.

[128]  R. Marc The role of glycine in the mammalian retina , 1988 .

[129]  M. Neal,et al.  Effect of excitatory amino acids on gamma‐aminobutyric acid release from frog horizontal cells. , 1985, The Journal of physiology.

[130]  M. Dichter,et al.  Quisqualate activates a rapidly inactivating high conductance ionic channel in hippocampal neurons. , 1989, Science.

[131]  R. Pourcho,et al.  A combined golgi and autoradiographic study of (3H)glycine‐accumulating amacrine cells in the cat retina , 1985, The Journal of comparative neurology.

[132]  C. Stevens,et al.  Glutamate activates multiple single channel conductances in hippocampal neurons , 1987, Nature.

[133]  D. R. Curtis,et al.  Chemical Excitation of Spinal Neurones , 1959, Nature.

[134]  O. Krishtal,et al.  Spider toxin blocks excitatory amino acid responses in isolated hippocampal pyramidal neurons , 1987, Neuroscience Letters.

[135]  R. Weiler,et al.  Glutamate and dopamine modulate synaptic plasticity in horizontal cell dendrites of fish retina , 1988, Neuroscience Letters.

[136]  A Kaneko,et al.  Responses of solitary retinal horizontal cells from Carassius auratus to L‐glutamate and related amino acids. , 1984, The Journal of physiology.

[137]  P. Rakic,et al.  GABA and GAD immunoreactiviy of photoreceptor terminals in primate retina , 1986, Nature.

[138]  T. O’Dell Pharmacological characterization of voltage-clamped catfish rod horizontal cell responses to kainic acid , 1989, Brain Research.

[139]  Paul A. Coleman,et al.  Kynurenic acid distinguishes kainate and quisqualate receptors in the vertebrate retina , 1986, Brain Research.

[140]  S. Naghshineh,et al.  Action of glutamate and aspartate analogues on rod horizontal and bipolar cells , 1981, Nature.

[141]  A. Ishida,et al.  Quisqualate and L-glutamate inhibit retinal horizontal-cell responses to kainate. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[142]  R. Johnson,et al.  Excitatory amino acid neurotransmission. , 1988, Journal of medicinal chemistry.

[143]  G. Falk,et al.  Joro spider venom: glutamate agonist and antagonist on the rod retina of the dogfish , 1987, Neuroscience Letters.

[144]  G. Collingridge,et al.  Magnesium ions block an N-methyl-d-aspartate receptor-mediated component of synaptic transmission in rat hippocampus , 1985, Neuroscience Letters.

[145]  B. Boycott,et al.  Synaptic connexions made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit , 1974, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[146]  G. Lunt,et al.  2-Amino-4-phosphonobutyric acid as a glutamate antagonist on locust muscle , 1976, Nature.

[147]  S. Massey,et al.  Glutamate receptors of ganglion cells in the rabbit retina: evidence for glutamate as a bipolar cell transmitter. , 1988, The Journal of physiology.

[148]  W. Stell,et al.  GABA‐ergic pathways in the goldfish retina , 1978, The Journal of comparative neurology.

[149]  M. Frosch,et al.  Responses mediated by excitatory amino acid receptors in solitary retinal ganglion cells from rat. , 1988, The Journal of physiology.

[150]  J. Collins,et al.  Isomers of 2-amino-7-phosphonoheptanoic acid as antagonists of neuronal excitants , 1982, Neuroscience Letters.

[151]  D. Attwell,et al.  Electrogenic glutamate uptake in glial cells is activated by intracellular potassium , 1988, Nature.

[152]  R. B. Langdon,et al.  Antagonists of glutaminergic neurotransmission block retinotectal transmission in goldfish , 1986, Brain Research.