Contrasting role of antimony and bismuth dopants on the thermoelectric performance of lead selenide

Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800 K. This is in sharp contrast to bismuth doped lead selenide, which reaches a figure of merit of <1. Substituting antimony or bismuth for lead achieves maximum power factors between ~23-27 μW cm(-1) K(-2) at temperatures above 400 K. The addition of small amounts (~0.25 mol%) of antimony generates extensive nanoscale precipitates, whereas comparable amounts of bismuth results in very few or no precipitates. The antimony-rich precipitates are endotaxial in lead selenide, and appear remarkably effective in reducing the lattice thermal conductivity. The corresponding bismuth-containing samples exhibit smaller reduction in lattice thermal conductivity.

[1]  David M. Rowe,et al.  Thermoelectrics and its energy harvesting , 2012 .

[2]  M. Kanatzidis,et al.  High-temperature thermoelectric properties of n-type PbSe doped with Ga, In, and Pb , 2011 .

[3]  P. Kent,et al.  Thermodynamic properties of PbTe, PbSe, and PbS: First-principles study , 2009 .

[4]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[5]  R. Blachnik,et al.  Thermodynamische Eigenschaften von IV–VI-Verbindungen: Bleichalkogenide / Thermodynamic Properties of IV–VI-Compounds: Leadchalcogenides , 1974 .

[6]  David J. Singh,et al.  High-temperature thermoelectric performance of heavily doped PbSe , 2010 .

[7]  Kuei-Fang Hsu,et al.  Resonant states in the electronic structure of the high performance thermoelectrics AgPbmSbTe2+m: the role of Ag-Sb microstructures. , 2004, Physical review letters.

[8]  G. Ottaviani,et al.  Impact of energy filtering and carrier localization on the thermoelectric properties of granular semiconductors , 2012 .

[9]  K. Hellwege,et al.  Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology , 1967 .

[10]  Timothy P. Hogan,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. , 2004 .

[11]  David J. Singh,et al.  Study of the thermoelectric properties of lead selenide doped with boron, gallium, indium, or thallium. , 2012, Journal of the American Chemical Society.

[12]  M. Kanatzidis,et al.  Strong Reduction of Thermal Conductivity in Nanostructured PbTe Prepared by Matrix Encapsulation , 2006 .

[13]  G. J. Snyder,et al.  Introduction to Modeling Thermoelectric Transport at High Temperatures , 2012 .

[14]  Ali Shakouri,et al.  Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features , 2010, Advanced materials.

[15]  Yu. I. Ravich,et al.  Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides , 1971 .

[16]  Eric S. Toberer,et al.  Characterization and analysis of thermoelectric transport in n-type Ba_(8)Ga_(16−x)Ge_(30+x) , 2009 .

[17]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[18]  M. Kanatzidis,et al.  Nanostructuring and High Thermoelectric Efficiency in p‐Type Ag(Pb1 – ySny)mSbTe2 + m , 2006 .

[19]  Joseph P. Heremans,et al.  Resonant levels in bulk thermoelectric semiconductors , 2012 .

[20]  M. Sarahan,et al.  Microstructure analyses and thermoelectric properties of Ag1−xPb18Sb1+yTe20 , 2012 .

[21]  M. Kanatzidis,et al.  Thermoelectrics with earth abundant elements: high performance p-type PbS nanostructured with SrS and CaS. , 2012, Journal of the American Chemical Society.

[22]  Shanyu Wang,et al.  Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance , 2011 .

[23]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[24]  A. K. Mohanty,et al.  A First Principles Study , 2012 .

[25]  M. Kanatzidis,et al.  Nanostructures boost the thermoelectric performance of PbS. , 2011, Journal of the American Chemical Society.

[26]  Timothy P. Hogan,et al.  Raising the thermoelectric performance of p-type PbS with endotaxial nanostructuring and valence-band offset engineering using CdS and ZnS. , 2012, Journal of the American Chemical Society.

[27]  M. Kanatzidis,et al.  High performance thermoelectrics from earth-abundant materials: enhanced figure of merit in PbS by second phase nanostructures. , 2011, Journal of the American Chemical Society.

[28]  Andreas Mandelis,et al.  Temperature dependence of carrier mobility in Si wafers measured by infrared photocarrier radiometry , 2003 .

[29]  Wei Chen,et al.  Cubic : Bulk Thermoelectric Materials with High Figure of Merit , 2004 .

[30]  Hao Li,et al.  High thermoelectric performance via hierarchical compositionally alloyed nanostructures. , 2013, Journal of the American Chemical Society.

[31]  M. Kanatzidis,et al.  High-temperature charge and thermal transport properties of the n-type thermoelectric material PbSe , 2011, 1108.2109.

[32]  M. Kanatzidis Nanostructured Thermoelectrics: The New Paradigm?† , 2010 .

[33]  M. Kanatzidis,et al.  Thermoelectrics from abundant chemical elements: high-performance nanostructured PbSe-PbS. , 2011, Journal of the American Chemical Society.

[34]  Shan Gao,et al.  Upper crustal abundances of trace elements: A revision and update , 2007 .

[35]  G. J. Snyder,et al.  Heavily Doped p‐Type PbSe with High Thermoelectric Performance: An Alternative for PbTe , 2011, Advanced materials.

[36]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[37]  M. Kanatzidis,et al.  High-performance tellurium-free thermoelectrics: all-scale hierarchical structuring of p-type PbSe-MSe systems (M = Ca, Sr, Ba). , 2013, Journal of the American Chemical Society.

[38]  K. Esfarjani,et al.  Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide , 2011 .

[39]  Jonathan D'Angelo,et al.  High thermoelectric figure of merit and nanostructuring in bulk p-type Na1-xPbmSbyTem+2. , 2006, Angewandte Chemie.

[40]  Wei Liu,et al.  Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si(1-x)Sn(x) solid solutions. , 2012, Physical review letters.

[41]  K. Gobrecht,et al.  The mobility of free carriers in PbSe crystals , 1973 .

[42]  David J. Singh,et al.  Thermoelectric properties of n-type PbSe revisited , 2012 .

[43]  M. Kanatzidis,et al.  Strained endotaxial nanostructures with high thermoelectric figure of merit. , 2011, Nature chemistry.

[44]  Heng Wang,et al.  Weak electron–phonon coupling contributing to high thermoelectric performance in n-type PbSe , 2012, Proceedings of the National Academy of Sciences.

[45]  B. A. Efimova,et al.  Scattering of Current Carriers and Transport Phenomena in Lead Chalcogenides II. Experiment , 1971 .