Space vector pulse width modulation of three-level inverter extending operation into overmodulation region

Multilevel voltage-fed inverters with space vector pulse width modulation have established their importance in high power high performance industrial drive applications. The paper proposes an overmodulation strategy of space vector PWM of a three-level inverter with linear transfer characteristic that easily extends from the undermodulation strategy previously developed by the authors for neural network implementation. The overmodulation strategy is very complex because of large number of inverter switching states, and hybrid in nature, that incorporates both undermodulation and overmodulation algorithms. The paper describes systematically the algorithm development, system analysis, DSP based implementation, and extensive evaluation study to validate the modulator performance. The modulator takes the command voltage and angle information at the input and generates symmetrical PWM waves for the three phases of an IGBT inverter that operates at 1.0 kHz switching frequency. The switching states are distributed such that the neutral point voltage always remains balanced. An open loop volts/Hz controlled induction motor drive has been evaluated extensively by smoothly varying the voltage and frequency in the whole speed range that covers both undermodulation and overmodulation (nearest to square-wave) regions, and performance was found to be excellent. The PWM algorithm can be easily extended to vector-controlled drive. The algorithm development is again fully compatible for implementation by a neural network.

[1]  B.K. Bose,et al.  A neural network based space vector PWM controller for a three-level voltage-fed inverter induction motor drive , 2001, Conference Record of the 2001 IEEE Industry Applications Conference. 36th IAS Annual Meeting (Cat. No.01CH37248).

[2]  Jie Zhang High performance control of a three-level IGBT inverter fed AC drive , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[3]  Dong-Seok Hyun,et al.  A novel PWM scheme for a three-level voltage source inverter with GTO thyristors , 1994, Proceedings of 1994 IEEE Industry Applications Society Annual Meeting.

[4]  M.P. Kazmierkowski,et al.  A neural network based space vector PWM controller for voltage-fed inverter induction motor drive , 1999, Conference Record of the 1999 IEEE Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370).

[5]  T. Kawabata,et al.  Space voltage vector-based new PWM method for large capacity three-level GTO inverter , 1992, Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation.

[6]  Gyu-Hyeong Cho,et al.  DSP based space vector PWM for three-level inverter with DC-link voltage balancing , 1991, Proceedings IECON '91: 1991 International Conference on Industrial Electronics, Control and Instrumentation.

[7]  Joachim Holtz,et al.  On continuous control of PWM inverters in the overmodulation range including the six-step mode , 1992, Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation.

[8]  Bimal K. Bose,et al.  Modern Power Electronics and AC Drives , 2001 .