Umbilics and lines of curvature for shape interrogation

This paper describes a method to extract the generic features of free-form parametric surfaces for shape interrogation. The umbilical points, which are the singular points of the orthogonal net of lines of curvature, have generic features and may act like fingerprints for shape recognition. We investigate the generic features of the umbilics and behavior of lines of curvature which pass through an umbilic on a parametric free-form surface. Our method is based on a coordinate transformation to set the parametric surface in Monge form and on a Taylor expansion to compute the angles of the tangent lines to the lines of curvatures at an umbilic. We also develop a novel and practical criterion which assures the existence of local extrema of principal curvature functions at umbilical points. Finally, numerical experiments illustrate how the generic features of the umbilics can be applied for surface recognition.

[1]  Rida T. Farouki,et al.  Surface Analysis Methods , 1986, IEEE Computer Graphics and Applications.

[2]  Nicholas M. Patrikalakis,et al.  Computation of singularities and intersections of offsets of planar curves , 1993, Comput. Aided Geom. Des..

[3]  Nicholas M. Patrikalakis,et al.  Computation of the solutions of nonlinear polynomial systems , 1993, Comput. Aided Geom. Des..

[4]  D. Struik Lectures on classical differential geometry , 1951 .

[5]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[6]  Franz-Erich Wolter,et al.  Geometrical Criteria to Guarantee Curvature Continuity of Blend Surfaces , 1992 .

[7]  Ralph R. Martin,et al.  Cyclides in surface and solid modeling , 1993, IEEE Computer Graphics and Applications.

[8]  Rida T. Farouki Graphical methods for surface differential geometry , 1987 .

[9]  M. J. Pratt,et al.  Cyclides in computer aided geometric design , 1990, Comput. Aided Geom. Des..

[10]  G. Darboux Leçons sur la théorie générale des surfaces , 1887 .

[11]  F. C. Harris,et al.  Photoelasticity Principles and Methods , 1949 .

[12]  Steven W. Zucker,et al.  Singularities of Principal Direction Fields from 3-D Images , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Ian R. Porteous The Circles of a Surface , 1988, IMA Conference on the Mathematics of Surfaces.

[14]  T. Banchoff,et al.  Cusps of Gauss mappings , 1982 .

[15]  F. Muchmeyer On surface imperfections , 1987 .

[16]  M. Berry,et al.  Umbilic points on Gaussian random surfaces , 1977 .

[17]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[18]  I. R. Porteous Ridges and umbilics of surfaces , 1987 .

[19]  D. Hilbert,et al.  Geometry and the Imagination , 1953 .

[20]  Tosiyasu L. Kunii,et al.  Modern Geometric Computing for Visualization , 2011, Springer Japan.

[21]  Nicholas M. Patrikalakis,et al.  Computation of Singularities for Engineering Design , 1992 .

[22]  Paul J. Besl,et al.  Principal patches-a viewpoint-invariant surface description , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[23]  J. Oden,et al.  The Mathematics of Surfaces II , 1988 .

[24]  R. R. Martin Principal Patches - A New Class of Surface Patch Based on Differential Geometry , 1983, Eurographics.

[25]  Takashi Maekawa Robust computational methods for shape interrogation , 1993 .

[26]  Jean Ponce,et al.  Describing surfaces , 1985, Comput. Vis. Graph. Image Process..