Development of test protocols for International Space Station particulate filters

Air quality control on the International Space Station (ISS) is a vital requirement for maintaining a clean environment for the crew and the hardware. This becomes a serious challenge in pressurized space compartments since no outside air ventilation is possible, and a larger particulate load is imposed on the filtration system due to lack of gravitational settling. The ISS Environmental Control and Life Support System (ECLSS) uses a filtration system that has been in use for over 14 years and has proven to meet this challenge. The heart of this system is a traditional High-Efficiency Particulate Air (HEPA) filter configured to interface with the rest of the life support elements and provide effective cabin filtration. The filter element for this system has a non-standard cross-section with a length-to-width ratio (LW) of 6.6. A filter test setup was designed and built to meet industry testing standards. A CFD analysis was performed to initially determine the optimal duct geometry and flow configuration. Both a screen and flow straighter were added to the test duct design to improve flow uniformity and face velocity profiles were subsequently measured to confirm. Flow quality and aerosol mixing assessments show that the duct flow is satisfactory for the intended leak testing. Preliminary leak testing was performed on two different ISS filters, one with known perforations and one with limited use, and results confirmed that the testing methods and photometer instrument are sensitive enough to detect and locate compromised sections of an ISS BFE.Given the engineering constraints in designing spacecraft life support systems, it is anticipated that non-industry standard filters will be required in future designs. This work is focused on developing test protocols for testing the ISS BFE filters, but the methodology is general enough to be extended to other present and future spacecraft filters. These techniques for characterizing the test duct and perform leak testing can be applied to conducting acceptance testing and inventory testing for future manned exploration programs with air revitalization filtration needs, possibly even for in-situ filter element integrity testing for extensively long-duration missions. We plan to address the unique needs for test protocols for crewed spacecraft particulate filters by preparing the initial version of a standard, to be documented as a NASA Technical Memorandum (TM).