The evolution of OAM-entanglement between two qutrits in turbulence

The use of Higher-dimensional entangled systems have been proved to signi cantly improve many quantum in- formation tasks. For instance, it has been shown that the use of higher-dimensional entangled systems provides a higher information capacity and an increased security in quantum cryptography. The orbital angular momentum (OAM) state of light is a potential candidate for the implementation of higher-dimensional entangled systems and has thus been considered for free-space quantum communication. However, atmospheric turbulence severely affects the OAM state of photons. In this work, we study the evolution of the OAM entanglement between two qutrits (three-dimensional quantum systems) in atmospheric turbulence both numerically and experimentally. The qutrits are photons entangled in their orbital angular momentum (OAM) states generated by spontaneous parametric down conversion. We propagate one of the photons through turbulence while leaving the other undis- turbed. To compare our results with previous work, we simulate the turbulent atmosphere with a single phase screen based on the Kolmogorov theory of turbulence and we use the tangle to quantify the amount of entangle- ment between the two qutrits. We compare our results with the evolution of OAM entanglement between two qubits.

[1]  Filippus S. Roux,et al.  Infinitesimal-propagation equation for decoherence of an orbital-angular-momentum-entangled biphoton state in atmospheric turbulence , 2011, 1102.5166.

[2]  Markus Tiersch,et al.  Entanglement evolution in finite dimensions. , 2008, Physical review letters.

[3]  A. Vaziri,et al.  Experimental quantum cryptography with qutrits , 2005, quant-ph/0511163.

[4]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[5]  Brian J. Smith,et al.  Two-photon wave mechanics , 2006 .

[6]  A. Forbes,et al.  Orbital-angular-momentum entanglement in turbulence , 2013, 1306.6495.

[7]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[8]  C. Gopaul,et al.  The effect of atmospheric turbulence on entangled orbital angular momentum states , 2007, quant-ph/0703205.

[9]  E. Eliel,et al.  Full-field quantum correlations of spatially entangled photons. , 2012, Physical review letters.

[10]  Simulating real-world turbulence in the lab: orbital angular momentum communication through 1 km of atmosphere , 2013 .

[11]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[12]  M. Tiersch,et al.  Evolution equation for quantum entanglement , 2008 .

[13]  D. Knepp Multiple phase-screen calculation of the temporal behavior of stochastic waves , 1983, Proceedings of the IEEE.

[14]  R. Boyd,et al.  Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum. , 2009, Optics letters.

[15]  F. Mintert Robust entangled states , 2009, 0901.2527.

[16]  F. S. Roux,et al.  Robust entangled qutrit states in atmospheric turbulence , 2012, 1211.3203.

[17]  Stefano Pironio,et al.  Closing the detection loophole in Bell experiments using qudits. , 2009, Physical review letters.

[18]  L. Andrews,et al.  Laser Beam Propagation Through Random Media , 1998 .

[19]  A. Vaziri,et al.  Entanglement of the orbital angular momentum states of photons , 2001, Nature.

[20]  Stephen M. Barnett,et al.  Full characterization of the quantum spiral bandwidth of entangled biphotons , 2010, 1011.5970.

[21]  Gabriel Molina-Terriza,et al.  Management of the angular momentum of light: preparation of photons in multidimensional vector states of angular momentum. , 2002, Physical review letters.

[22]  A. Buchleitner,et al.  Observable entanglement measure for mixed quantum States. , 2006, Physical review letters.

[23]  Robert W Boyd,et al.  Influence of atmospheric turbulence on states of light carrying orbital angular momentum. , 2012, Optics letters.

[24]  Adetunmise C. Dada,et al.  Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities , 2011, 1104.5087.

[25]  C. Paterson,et al.  Atmospheric turbulence and orbital angular momentum of single photons for optical communication. , 2005, Physical review letters.

[26]  S. Flatté,et al.  Intensity images and statistics from numerical simulation of wave propagation in 3-D random media. , 1988, Applied optics.

[27]  M. Neifeld,et al.  Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link. , 2008, Applied optics.

[28]  G. Vallone,et al.  Impact of turbulence in long range quantum and classical communications. , 2012, Physical Review Letters.

[29]  He,et al.  Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. , 1995, Physical review letters.

[30]  S. M. Zhao,et al.  Aberration corrections for free-space optical communications in atmosphere turbulence using orbital angular momentum states. , 2012, Optics Express.

[31]  R. Boyd,et al.  Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding. , 2012, Optics Express.

[32]  R. Lane,et al.  Simulation of a Kolmogorov phase screen , 1992 .

[33]  S P Walborn,et al.  Quantum key distribution with higher-order alphabets using spatially encoded qudits. , 2006, Physical review letters.

[34]  R.T.Thew,et al.  Qudit Quantum State Tomography , 2002, quant-ph/0201052.

[35]  J. P. Woerdman,et al.  Transport of orbital-angular-momentum entanglement through a turbulent atmosphere. , 2009, Optics express.