Smart material/actuator needs in extreme environments in space

Future missions to the planets and moons in our Solar System will require new technology. Missions with surface or atmospheric mobility or sample acquisition requirements will need advanced actuation technology to operate in the extreme environments found in the Solar System. Depending on the specific mission this technology may be required to withstand 10's of Kelvin environments or temperatures exceeding that of Venus (460°C). In addition the technology may have to withstand high radiation and corrosive environments and pressures ranging from high vacuum to 100's of MPa. These challenging mission requirements push the limit in performance even under terrestrial conditions. Motors for mobility platforms, deployment devices or actuators for sampling tools are required that can operate reliably and deliver substantial torque and power. These devices must be lightweight, compact and operate effectively under extreme conditions. This paper will focus on a range of actuators based on electromechanical materials used for the applications discussed above and will present some of the challenges of developing these systems for space applications.

[1]  A. Kumada,et al.  A Piezoelectric Ultrasonic Motor , 1985 .

[2]  M. Badescu,et al.  Ultrasonic / Sonic Driller / Corer ( USDC ) as a Subsurface Sampler and Lab-ona-Drill for Planetary Exploration Applications , 2007 .

[3]  Matthew W. Hooker,et al.  Characterization of Multilayer Piezoelectric Actuators for Use in Active Isolation Mounts , 1997 .

[4]  Ricardo J. Zemella Design and development of a linear travelling wave motor , 1990 .

[5]  S. Ueha,et al.  Excitation conditions of flexural traveling waves for a reversible ultrasonic linear motor , 1985 .

[6]  Robert C. Haymes,et al.  Introduction to space science , 1971 .

[7]  M. Kurosawa,et al.  Ultrasonic motors , 1988, IEEE 1988 Ultrasonics Symposium Proceedings..

[8]  R. Inaba,et al.  Piezoelectric Ultrasonic Motor , 1987, IEEE 1987 Ultrasonics Symposium.

[9]  Nesbitt W. Hagood,et al.  Modeling of a piezoelectric rotary ultrasonic motor , 1994, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  W. P. Mason Physical Acoustics and the Properties of Solids , 1956 .

[11]  Craig D. Near,et al.  Piezoelectric actuator technology , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[12]  Yoseph Bar-Cohen,et al.  Dexterous robotic sampling for Mars in-situ science , 1997, Other Conferences.

[13]  D. Hastings,et al.  Spacecraft–Environment Interactions: Index , 1996 .

[14]  Y. Bar-Cohen,et al.  Rotary Piezoelectric Motors Actuated by Traveling Waves (abstract) , 1997 .

[15]  Stewart Sherrit,et al.  Resonance analysis of high-temperature piezoelectric materials for actuation and sensing , 2004, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[16]  Kenji Uchino,et al.  Ultrasonic linear motors using a multilayered piezoelectric actuator , 1988 .

[17]  Y. Bar-Cohen,et al.  Modeling and computer simulation of ultrasonic/sonic driller/corer (USDC) , 2003, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[18]  R.E. Newnham,et al.  Composite piezoelectric transducer with truncated conical endcaps "cymbal" , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[19]  Yoseph Bar-Cohen,et al.  Rotary ultrasonic motors actuated by traveling flexural waves , 1997, Smart Structures.

[20]  Y. Bar-Cohen,et al.  Modeling of horns for sonic/ultrasonic applications , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[21]  G. Haertling,et al.  Temperature dependent characteristics of Cerambow actuators , 1996, ISAF '96. Proceedings of the Tenth IEEE International Symposium on Applications of Ferroelectrics.

[22]  Yoseph Bar-Cohen,et al.  Rotary ultrasonic motors actuated by traveling flexural waves , 1999, Smart Structures.

[23]  J. L. Wallace,et al.  A vibrating reed magnetometer, based on an Inchworm motor and a tunnelling-tip sensor , 1995 .

[24]  D. Pohl Dynamic piezoelectric translation devices , 1987 .

[25]  Gary H. Koopmann,et al.  Design, modeling, and performance of a high-force piezoelectric inchworm motor , 1998, Smart Structures.

[26]  R. Gershman,et al.  Technology needs of future planetary missions , 1999 .

[27]  Gregory P. Carman,et al.  Frequency response of an inchworm motor fabricated with micromachined interlocking surface mesoscale actuator device (MAD) , 1998, Smart Structures.

[28]  Toshiiku Sashida,et al.  An Introduction to Ultrasonic Motors , 1994 .

[29]  N. Shimizu,et al.  An ultrahigh vacuum scanning tunneling microscope with a new inchworm mechanism , 1990 .

[30]  Louise Jandura,et al.  Brake Failure from Residual Magnetism in the Mars Exploration Rover Lander Petal Actuator , 2004 .