Spatial Variability of Nocturnal Stability Regimes in an Operational Weather Prediction Model

[1]  F. Bosveld,et al.  Heat Transfer Through Grass: A Diffusive Approach , 2022, Boundary-Layer Meteorology.

[2]  Jan Fokke Meirink,et al.  Model development in practice: A comprehensive update to the boundary layer schemes in HARMONIE-AROME cycle 40 , 2021, Geoscientific Model Development.

[3]  H. Sodemann,et al.  On the utility of individual tendency output: Revealing interactions between parameterised processes during a marine cold air outbreak , 2021, Weather and forecasting.

[4]  M. Rodwell,et al.  Measuring the Impact of a New Snow Model Using Surface Energy Budget Process Relationships , 2020, Journal of Advances in Modeling Earth Systems.

[5]  T. Haiden,et al.  Impact of a Multi‐Layer Snow Scheme on Near‐Surface Weather Forecasts , 2019, Journal of Advances in Modeling Earth Systems.

[6]  Barbara Casati,et al.  An NWP Model Intercomparison of Surface Weather Parameters in the European Arctic during the Year of Polar Prediction Special Observing Period Northern Hemisphere 1 , 2019, Weather and Forecasting.

[7]  I. Esau,et al.  Systematic errors in northern Eurasian short-term weather forecasts induced by atmospheric boundary layer thickness , 2018, Environmental Research Letters.

[8]  A. Korosov,et al.  Characteristics of a Convective-Scale Weather Forecasting System for the European Arctic , 2017 .

[9]  F. Bosveld,et al.  From Near-Neutral to Strongly Stratified: Adequately Modelling the Clear-Sky Nocturnal Boundary Layer at Cabauw , 2017, Boundary-Layer Meteorology.

[10]  Lisa Bengtsson,et al.  The HARMONIE-AROME Model Configuration in the ALADIN-HIRLAM NWP System , 2017 .

[11]  E. Martin,et al.  The interactions between soil–biosphere–atmosphere (ISBA) land surface model multi-energy balance (MEB) option in SURFEXv8 – Part 2: Introduction of a litter formulation and model evaluation for local-scale forest sites , 2017 .

[12]  B. Decharme,et al.  Evaluating the performance of coupled snow–soil models in SURFEXv8 to simulate the permafrost thermal regime at a high Arctic site , 2017 .

[13]  C. Genthon,et al.  Regime transitions in near-surface temperature inversions : a conceptual model , 2017 .

[14]  L. Jarlan,et al.  The interactions between soil–biosphere–atmosphere land surface model with a multi-energy balance (ISBA-MEB) option in SURFEXv8 – Part 1: Model description , 2017 .

[15]  C. Genthon,et al.  Stable boundary‐layer regimes at Dome C, Antarctica: observation and analysis , 2016 .

[16]  C. Fortelius,et al.  Weather model verification using Sodankylä mast measurements , 2015 .

[17]  C. Delire,et al.  Impacts of snow and organic soils parameterization on northern Eurasian soil temperature profiles simulated by the ISBA land surface model , 2015 .

[18]  D. Marsan,et al.  Interactive comment on “ Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system : a review , 2022 .

[19]  A. Holtslag,et al.  Stable Atmospheric Boundary Layers and Diurnal Cycles: Challenges for Weather and Climate Models , 2013 .

[20]  P. Bechtold,et al.  Why is it so difficult to represent stably stratified conditions in numerical weather prediction (NWP) models? , 2013 .

[21]  A. Holtslag,et al.  The role of snow‐surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice , 2013 .

[22]  T. Vihma,et al.  Evaluation of NWP results for wintertime nocturnal boundary‐layer temperatures over Europe and Finland , 2012 .

[23]  G. Svensson,et al.  Impact of Flow-Dependent Horizontal Diffusion on Resolved Convection in AROME , 2012 .

[24]  Aaron Boone,et al.  Local evaluation of the Interaction between Soil Biosphere Atmosphere soil multilayer diffusion scheme using four pedotransfer functions , 2011 .

[25]  M. Kanamitsu,et al.  The Added Value Index: A new metric to quantify the added value of regional models , 2011 .

[26]  V. Masson,et al.  The AROME-France Convective-Scale Operational Model , 2011 .

[27]  A. Holtslag,et al.  Analysis of Model Results for the Turning of the Wind and Related Momentum Fluxes in the Stable Boundary Layer , 2009 .

[28]  J. Edwards Radiative Processes in the Stable Boundary Layer: Part II. The Development of the Nocturnal Boundary Layer , 2009 .

[29]  T. Elperin,et al.  Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes , 2008, 0807.1873.

[30]  G. Lenderink,et al.  The Scaling Behaviour of a Turbulent Kinetic Energy Closure Model for Stably Stratified Conditions , 2008 .

[31]  Albert A. M. Holtslag,et al.  Single column modeling of the diurnal cycle based on CASES99 data - GABLS second intercomparison project , 2006 .

[32]  Bert Holtslag,et al.  Preface: GEWEX Atmospheric Boundary-layer Study (GABLS) on Stable Boundary Layers , 2006 .

[33]  Gert-Jan Steeneveld,et al.  Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99 , 2006 .

[34]  Klaus Wyser,et al.  ‘Modelling the Arctic Boundary Layer: An Evaluation of Six Arcmip Regional-Scale Models using Data from the Sheba Project’ , 2005 .

[35]  I. Esau,et al.  Resistance and heat‐transfer laws for stable and neutral planetary boundary layers: Old theory advanced and re‐evaluated , 2005 .

[36]  T. Foken,et al.  Empirical evaluation of an extended similarity theory for the stably stratified atmospheric surface layer , 2004 .

[37]  Albert A. M. Holtslag,et al.  An updated length‐scale formulation for turbulent mixing in clear and cloudy boundary layers , 2004 .

[38]  T. W. Horst,et al.  Heat Balance in the Nocturnal Boundary Layer during CASES-99 , 2003 .

[39]  Aditi,et al.  Mean Structure of the Nocturnal Boundary Layer under Strong and Weak Wind Conditions: EPRI Case Study , 2003 .

[40]  Pierre Etchevers,et al.  An Intercomparison of Three Snow Schemes of Varying Complexity Coupled to the Same Land Surface Model: Local-Scale Evaluation at an Alpine Site , 2001 .

[41]  C. Bretherton,et al.  A comparison of cloud and boundary layer variables in the ECMWF forecast model with observations at Surface Heat Budget of the Arctic Ocean (SHEBA) ice camp , 2000 .

[42]  Jean-François Mahfouf,et al.  The representation of soil moisture freezing and its impact on the stable boundary layer , 1999 .

[43]  Yongkang Xue,et al.  A simple snow-atmosphere-soil transfer model , 1999 .

[44]  S. Derbyshire Boundary-Layer Decoupling over Cold Surfaces as a Physical Boundary-Instability , 1999 .

[45]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[46]  A. Holtslag,et al.  Evaluation and model impacts of alternative boundary-layer height formulations , 1996 .

[47]  Jean-François Mahfouf,et al.  A new snow parameterization for the Météo-France climate model , 1995 .

[48]  M. Friedman,et al.  Predictability of the Stable Atmospheric Boundary Layer , 1995 .

[49]  S. Planton,et al.  A Simple Parameterization of Land Surface Processes for Meteorological Models , 1989 .

[50]  Albert A. M. Holtslag,et al.  Estimation of Atmospheric Boundary Layer Parameters for Diffusion Applications , 1985 .

[51]  L. Mahrt,et al.  The Nocturnal Surface Inversion and Influence of Clear-Air Radiative Cooling , 1982 .

[52]  Y. Yen Review of Thermal Properties of Snow, Ice and Sea Ice, , 1981 .

[53]  J. Deardorff Stratocumulus-capped mixed layers derived from a three-dimensional model , 1980 .

[54]  J. Edwards Radiative Processes in the Stable Boundary Layer: Part I. Radiative Aspects , 2009 .

[55]  Pierre Bénard,et al.  Semi‐Lagrangian advection scheme with controlled damping: An alternative to nonlinear horizontal diffusion in a numerical weather prediction model , 2008 .