Synthesis of Hollow β-Phase GeO2 Nanoparticles.

We fabricated mono-dispersed hollow waxberry shaped β-quartz GeO2 by a facile one-step synthesis in emulsion at room temperature. TEM images indicated that hollow waxberry shaped GeO2 were consisted of nano-sphere whose average size were estimated to be 20 nm. The growth mechanism and optical properties of the products were also investigated. It was found that addition of n-butanol and PVP were crucial factors to control the morphology of GeO2. The possible formation mechanism of the hollow interior is proposed as the Ostwald ripening. The optical properties of the β-GeO2 nanoparticles with hollow shapes were also studied with photoluminescence spectrum, which reveals a broad emission, suggesting potential applications in electronic and optoelectronic nanodevices. These attractive results provide us a new simple method further used to fabricate other specific hollow structure and indicate hollow waxberry shaped GeO2 may have potential applications in light-emitting nanodevices.