Giant Nonlinear Response at the Nanoscale Driven by Bound States in the Continuum.

Being motivated by the recent prediction of high-Q modes in subwavelength dielectric resonators inspired by bound states in the continuum (BIC), we study the second-harmonic generation from isolated subwavelength AlGaAs nanoantennas. We reveal that nonlinear effects at the nanoscale can be enhanced dramatically provided the resonator parameters are tuned to the BIC regime. We predict a record-high conversion efficiency for nanoscale resonators that exceeds by 2 orders of magnitude the conversion efficiency observed at the magnetic dipole Mie resonance, thus opening the way for highly efficient nonlinear metasurfaces and metadevices.

[1]  I Favero,et al.  Second-harmonic generation in AlGaAs microdisks in the telecom range. , 2014, Optics letters.

[2]  L. J. Jiang,et al.  Strongly enhanced and directionally tunable second-harmonic radiation from a plasmonic particle-in-cavity nanoantenna , 2016, 1605.03268.

[3]  E. Bulgakov,et al.  Resonance induced by a bound state in the continuum in a two-level nonlinear Fano-Anderson model , 2009 .

[4]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[5]  Zach DeVito,et al.  Opt , 2017 .

[6]  A. Locatelli,et al.  Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. , 2014, Nature nanotechnology.

[7]  A. Zayats,et al.  Nonlinear plasmonics , 2012, Nature Photonics.

[8]  Andrea Alù,et al.  Embedded photonic eigenvalues in 3D nanostructures , 2014 .

[9]  Andrey Bogdanov,et al.  High-Q Supercavity Modes in Subwavelength Dielectric Resonators. , 2017, Physical review letters.

[10]  Steven G. Johnson,et al.  Observation of trapped light within the radiation continuum , 2013, Nature.

[11]  H. Sigg,et al.  The refractive index of AlxGa1−xAs below the band gap: Accurate determination and empirical modeling , 2000 .

[12]  Hui Cao,et al.  Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics , 2015 .

[13]  Chennupati Jagadish,et al.  Nonlinear Generation of Vector Beams From AlGaAs Nanoantennas. , 2016, Nano letters.

[14]  Paulina S. Kuo,et al.  Second-harmonic generation using -quasi-phasematching in a GaAs whispering-gallery-mode microcavity , 2014, Nature Communications.

[15]  Martti Kauranen,et al.  Freeing Nonlinear Optics from Phase Matching , 2013, Science.

[16]  E. Bulgakov,et al.  Bound states in the continuum in open quantum billiards with a variable shape , 2006 .

[17]  Yuri Kivshar,et al.  Optical physics: Supercavity lasing , 2017, Nature.

[18]  E. Muljarov,et al.  Brillouin-Wigner perturbation theory in open electromagnetic systems , 2010, 1205.4924.

[19]  Dmitry V. Strekalov,et al.  Nonlinear and quantum optics with whispering gallery resonators , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[20]  A. Locatelli,et al.  Polarization properties of second-harmonic generation in AlGaAs optical nanoantennas. , 2017, Optics letters.

[21]  Dmitry Strekalov,et al.  Naturally phase matched second harmonic generation in a whispering gallery mode resonator , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[22]  C De Angelis,et al.  Enhanced second-harmonic generation from magnetic resonance in AlGaAs nanoantennas , 2015, SPIE OPTO.

[23]  B. Luk’yanchuk,et al.  Optically resonant dielectric nanostructures , 2016, Science.

[24]  H. Tang,et al.  Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency , 2016 .

[25]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[26]  A. Locatelli,et al.  Controlling second-harmonic generation at the nanoscale with monolithic AlGaAs-on-AlOx antennas , 2017, Nanotechnology.

[27]  O. Martin,et al.  Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications. , 2015, ACS nano.

[28]  Y. Kivshar,et al.  Selective Third-Harmonic Generation by Structured Light in Mie-Resonant Nanoparticles , 2017 .

[29]  Friedrich,et al.  Interfering resonances and bound states in the continuum. , 1985, Physical review. A, General physics.

[30]  M. Sinclair,et al.  Resonantly Enhanced Second-Harmonic Generation Using III-V Semiconductor All-Dielectric Metasurfaces. , 2016, Nano letters.

[31]  Sergey Kruk,et al.  Functional Meta-Optics and Nanophotonics Govern by Mie Resonances , 2017, 1710.08595.

[32]  L Carletti,et al.  Monolithic AlGaAs second-harmonic nanoantennas. , 2016, Optics express.

[33]  A. Bogdanov,et al.  Nonlinear Bound States in the Continuum in One-Dimensional Photonic Crystal Slab , 2018, Journal of Physics: Conference Series.

[34]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[35]  J. Joannopoulos,et al.  Temporal coupled-mode theory for the Fano resonance in optical resonators. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[36]  Masaya Notomi,et al.  Strong Light Confinement With Periodicity , 2011, Proceedings of the IEEE.

[37]  Y. Kivshar,et al.  Multipolar nonlinear nanophotonics , 2016, 1609.02057.