Runge–Kutta projection methods with low dispersion and dissipation errors
暂无分享,去创建一个
Manuel Calvo | Juan I. Montijano | Luis Rández | M. P. Laburta | J. I. Montijano | M. Calvo | L. Rández
[1] L. Brugnano,et al. A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..
[2] L. Shampine,et al. A 3(2) pair of Runge - Kutta formulas , 1989 .
[3] G. Quispel,et al. Energy-preserving Runge-Kutta methods , 2009 .
[4] M. P. Laburta,et al. Projection methods preserving Lyapunov functions , 2010 .
[5] E. Hairer. Energy-preserving variant of collocation methods 1 , 2010 .
[6] David Cohen,et al. Linear energy-preserving integrators for Poisson systems , 2011 .
[7] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[8] Ben P. Sommeijer,et al. Phase-Lag Analysis of Implicit Runge–Kutta Methods , 1986 .
[9] Francesco Fassò. Comparison of splitting algorithms for the rigid body , 2003 .
[10] G. J. Cooper. Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .
[11] G. R. W. Quispel,et al. Geometric integration of conservative polynomial ODEs , 2003 .
[12] G. Quispel,et al. A new class of energy-preserving numerical integration methods , 2008 .
[13] Lawrence F. Shampine,et al. The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..
[14] Luigi Brugnano,et al. Line integral methods which preserve all invariants of conservative problems , 2012, J. Comput. Appl. Math..
[15] Gilles Vilmart,et al. Reducing round-off errors in rigid body dynamics , 2008, J. Comput. Phys..
[16] F. Iavernaro,et al. High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2 , 2009 .
[17] Manuel Calvo,et al. Approximate preservation of quadratic first integrals by explicit Runge–Kutta methods , 2010, Adv. Comput. Math..
[18] F. Iavernaro,et al. s‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type , 2007 .
[19] Manuel Calvo,et al. Energy-preserving methods for Poisson systems , 2012, J. Comput. Appl. Math..
[20] Manuel Calvo,et al. Explicit Runge-Kutta methods for initial value problems with oscillating solutions , 1996 .
[21] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[22] G. Quispel,et al. SOLVING ODE's NUMERICALLY WHILE PRESERVING ALL FIRST INTEGRALS , 1996 .
[23] L. Brugnano,et al. Hamiltonian BVMs (HBVMs): A Family of "Drift Free" Methods for Integrating polynomial Hamiltonian problems' , 2009 .
[24] Toshiyuki Koto. Phase Lag Analysis of Implicit Runge - Kutta Methods , 1989 .
[25] Manuel Calvo,et al. On the Preservation of Invariants by Explicit Runge-Kutta Methods , 2006, SIAM J. Sci. Comput..
[26] G. Quispel,et al. Geometric Integration Methods that Preserve Lyapunov Functions , 2005 .