Runge–Kutta projection methods with low dispersion and dissipation errors

In this paper new one-step methods that combine Runge–Kutta (RK) formulae with a suitable projection after the step are proposed for the numerical solution of Initial Value Problems. The aim of this projection is to preserve some first integral in the numerical integration. In contrast with standard orthogonal projection, the direction of the projection at each step is obtained from another suitable embedded formula so that the overall method is affine invariant. A study of the local errors of these projection methods is carried out, showing that by choosing proper embedded formulae the order can be increased for the harmonic oscillator. Particular embedded formulae for the third order method by Bogacki and Shampine (BS3) are provided. Some criteria to get appropriate dynamical directions for general problems as well as sufficient conditions that ensure the existence of RK methods embedded in BS3 according to them are given. Finally, some numerical experiments to test the behaviour of the new projection methods are presented.

[1]  L. Brugnano,et al.  A simple framework for the derivation and analysis of effective one-step methods for ODEs , 2010, Appl. Math. Comput..

[2]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[3]  G. Quispel,et al.  Energy-preserving Runge-Kutta methods , 2009 .

[4]  M. P. Laburta,et al.  Projection methods preserving Lyapunov functions , 2010 .

[5]  E. Hairer Energy-preserving variant of collocation methods 1 , 2010 .

[6]  David Cohen,et al.  Linear energy-preserving integrators for Poisson systems , 2011 .

[7]  Ben P. Sommeijer,et al.  Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .

[8]  Ben P. Sommeijer,et al.  Phase-Lag Analysis of Implicit Runge–Kutta Methods , 1986 .

[9]  Francesco Fassò Comparison of splitting algorithms for the rigid body , 2003 .

[10]  G. J. Cooper Stability of Runge-Kutta Methods for Trajectory Problems , 1987 .

[11]  G. R. W. Quispel,et al.  Geometric integration of conservative polynomial ODEs , 2003 .

[12]  G. Quispel,et al.  A new class of energy-preserving numerical integration methods , 2008 .

[13]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[14]  Luigi Brugnano,et al.  Line integral methods which preserve all invariants of conservative problems , 2012, J. Comput. Appl. Math..

[15]  Gilles Vilmart,et al.  Reducing round-off errors in rigid body dynamics , 2008, J. Comput. Phys..

[16]  F. Iavernaro,et al.  High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2 , 2009 .

[17]  Manuel Calvo,et al.  Approximate preservation of quadratic first integrals by explicit Runge–Kutta methods , 2010, Adv. Comput. Math..

[18]  F. Iavernaro,et al.  s‐stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type , 2007 .

[19]  Manuel Calvo,et al.  Energy-preserving methods for Poisson systems , 2012, J. Comput. Appl. Math..

[20]  Manuel Calvo,et al.  Explicit Runge-Kutta methods for initial value problems with oscillating solutions , 1996 .

[21]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[22]  G. Quispel,et al.  SOLVING ODE's NUMERICALLY WHILE PRESERVING ALL FIRST INTEGRALS , 1996 .

[23]  L. Brugnano,et al.  Hamiltonian BVMs (HBVMs): A Family of "Drift Free" Methods for Integrating polynomial Hamiltonian problems' , 2009 .

[24]  Toshiyuki Koto Phase Lag Analysis of Implicit Runge - Kutta Methods , 1989 .

[25]  Manuel Calvo,et al.  On the Preservation of Invariants by Explicit Runge-Kutta Methods , 2006, SIAM J. Sci. Comput..

[26]  G. Quispel,et al.  Geometric Integration Methods that Preserve Lyapunov Functions , 2005 .