A new perspective for optimal portfolio selection with random fuzzy returns

[1]  A. Roy Safety first and the holding of assetts , 1952 .

[2]  A. Roy SAFETY-FIRST AND HOLDING OF ASSETS , 1952 .

[3]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[4]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[5]  Huibert Kwakernaak,et al.  Fuzzy random variables - I. definitions and theorems , 1978, Inf. Sci..

[6]  John S. Baras,et al.  Chandrasekhar algorithms for linear time varying distributed systems , 1979, Inf. Sci..

[7]  Huibert Kwakernaak,et al.  Fuzzy random variables--II. Algorithms and examples for the discrete case , 1979, Inf. Sci..

[8]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[9]  F. Choobineh,et al.  A simple approximation for semivariance , 1986 .

[10]  Ghassem A. Homaifar,et al.  VARIANCE AND LOWER PARTIAL MOMENT BETAS AS ALTERNATIVE RISK MEASURES IN COST OF CAPITAL ESTIMATION: A DEFENSE OF THE CAPM BETA , 1990 .

[11]  S. Venkatesh Computation and learning in the context of neural network capacity , 1992 .

[12]  Harry M. Markowitz,et al.  Computation of mean-semivariance efficient sets by the Critical Line Algorithm , 1993, Ann. Oper. Res..

[13]  Brian M. Rom,et al.  Post-Modern Portfolio Theory Comes of Age , 1993 .

[14]  Allan Pinkus,et al.  Multilayer Feedforward Networks with a Non-Polynomial Activation Function Can Approximate Any Function , 1991, Neural Networks.

[15]  K. V. Chow,et al.  ON VARIANCE AND LOWER PARTIAL MOMENT BETAS THE EQUIVALENCE OF SYSTEMATIC RISK MEASURES , 1994 .

[16]  Giovanna Castellano,et al.  An iterative pruning algorithm for feedforward neural networks , 1997, IEEE Trans. Neural Networks.

[17]  Henk Grootveld,et al.  Variance vs downside risk: Is there really that much difference? , 1999, Eur. J. Oper. Res..

[18]  Peijun Guo,et al.  Portfolio selection based on upper and lower exponential possibility distributions , 1999, Eur. J. Oper. Res..

[19]  Peijun Guo,et al.  Portfolio selection based on fuzzy probabilities and possibility distributions , 2000, Fuzzy Sets Syst..

[20]  Jaroslava Hlouskova,et al.  The efficient frontier for bounded assets , 2000, Math. Methods Oper. Res..

[21]  Kin Keung Lai,et al.  A model for portfolio selection with order of expected returns , 2000, Comput. Oper. Res..

[22]  María Angeles Gil,et al.  Fuzzy random variables , 2001, Inf. Sci..

[23]  M. Arenas,et al.  A fuzzy goal programming approach to portfolio selection , 2001 .

[24]  Yian-Kui Liu,et al.  Expected value of fuzzy variable and fuzzy expected value models , 2002, IEEE Trans. Fuzzy Syst..

[25]  Christer Carlsson,et al.  A Possibilistic Approach to Selecting Portfolios with Highest Utility Score , 2001, Fuzzy Sets Syst..

[26]  Liu Yian-Kui,et al.  Random fuzzy programming with chance measures defined by fuzzy integrals , 2002 .

[27]  Baoding Liu,et al.  Random fuzzy dependent-chance programming and its hybrid intelligent algorithm , 2002, Inf. Sci..

[28]  Ana Colubi,et al.  Simulation of random fuzzy variables: an empirical approach to statistical/probabilistic studies with fuzzy experimental data , 2002, IEEE Trans. Fuzzy Syst..

[29]  Yian-Kui Liu,et al.  Expected Value Operator of Random Fuzzy Variable, Random Fuzzy Expected Value Models , 2003, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[30]  Baoding Liu Uncertainty Theory: An Introduction to its Axiomatic Foundations , 2004 .

[31]  Wei-Guo Zhang,et al.  On admissible efficient portfolio selection problem , 2004, Appl. Math. Comput..

[32]  Baoding Liu,et al.  Continuity theorems and chance distribution of random fuzzy variables , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[33]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU) - an outline , 2005, GrC.

[34]  Wei-Guo Zhang,et al.  On admissible efficient portfolio selection policy , 2005, Appl. Math. Comput..

[35]  Xiaotie Deng,et al.  A minimax portfolio selection strategy with equilibrium , 2005, Eur. J. Oper. Res..

[36]  Xiaoxia Huang,et al.  Fuzzy chance-constrained portfolio selection , 2006, Appl. Math. Comput..

[37]  Baoding Liu,et al.  A survey of credibility theory , 2006, Fuzzy Optim. Decis. Mak..

[38]  Valerio Lacagnina,et al.  A stochastic soft constraints fuzzy model for a portfolio selection problem , 2006, Fuzzy Sets Syst..

[39]  Amelia Bilbao-Terol,et al.  Fuzzy compromise programming for portfolio selection , 2006, Appl. Math. Comput..

[40]  Xiaoxia Huang,et al.  Two new models for portfolio selection with stochastic returns taking fuzzy information , 2007, Eur. J. Oper. Res..

[41]  Daniela Favaretto,et al.  Interfaces with Other Disciplines On the existence of solutions to the quadratic mixed-integer mean – variance portfolio selection problem , 2006 .

[42]  Fouad Ben Abdelaziz,et al.  Multi-objective stochastic programming for portfolio selection , 2007, Eur. J. Oper. Res..

[43]  Weiyin Fei,et al.  Optimal consumption and portfolio choice with ambiguity and anticipation , 2007, Inf. Sci..

[44]  Yue Qi,et al.  Randomly generating portfolio-selection covariance matrices with specified distributional characteristics , 2007, Eur. J. Oper. Res..

[45]  Xiaoxia Huang Portfolio selection with fuzzy returns , 2007, J. Intell. Fuzzy Syst..

[46]  Xiaoxia Huang,et al.  Risk curve and fuzzy portfolio selection , 2008, Comput. Math. Appl..

[47]  Xiaoxia Huang Expected model for portfolio selection with random fuzzy returns , 2008, Int. J. Gen. Syst..

[48]  Xiaoxia Huang,et al.  Portfolio selection with a new definition of risk , 2008, Eur. J. Oper. Res..

[49]  Baoding Liu,et al.  Theory and Practice of Uncertain Programming , 2003, Studies in Fuzziness and Soft Computing.