Animated Edge Textures in Node-Link Diagrams: a Design Space and Initial Evaluation

Network edge data attributes are usually encoded using color, opacity, stroke thickness and stroke pattern, or some combination thereof. In addition to these static variables, it is also possible to animate dynamic particles flowing along the edges. This opens a larger design space of animated edge textures, featuring additional visual encodings that have potential not only in terms of visual mapping capacity but also playfulness and aesthetics. Such animated edge textures have been used in several commercial and design-oriented visualizations, but to our knowledge almost always in a relatively ad hoc manner. We introduce a design space and Web-based framework for generating animated edge textures, and report on an initial evaluation of particle properties - particle speed, pattern and frequency - in terms of visual perception.

[1]  Robert J Snowden,et al.  Perception of visual motion , 2002 .

[2]  D. Simons,et al.  Moving and looming stimuli capture attention , 2003, Perception & psychophysics.

[3]  Colin Ware,et al.  Cognitive Measurements of Graph Aesthetics , 2002, Inf. Vis..

[4]  Jon Driver,et al.  Visual search for a conjunction of movement and form is parallel , 1988, Nature.

[5]  Arjan Kuijper,et al.  Visual Analysis of Large Graphs: State‐of‐the‐Art and Future Research Challenges , 2011, Eurographics.

[6]  R. C. Oldfield THE PERCEPTION OF CAUSALITY , 1963 .

[7]  Danyel Fisher,et al.  Animation for Visualization: Opportunities and Drawbacks , 2010, Beautiful Visualization.

[8]  Kim Thomas,et al.  Just Noticeable Difference and Tempo Change , 2022 .

[9]  Bernhard E. Riecke,et al.  Simple motion textures for ambient affect , 2011, CAe '11.

[10]  Anne Treisman,et al.  Preattentive processing in vision , 1985, Computer Vision Graphics and Image Processing.

[11]  Daniel W. Archambault,et al.  On the effective visualisation of dynamic attribute cascades , 2016, Inf. Vis..

[12]  Uta Hinrichs,et al.  Diving in at the Deep End: The Value of Alternative In-Situ Approaches for Systematic Library Search , 2016, CHI.

[13]  Heidrun Schumann,et al.  A Survey of Multi-faceted Graph Visualization , 2015, EuroVis.

[14]  Mark Edwards,et al.  The detection of multiple global directions: capacity limits with spatially segregated and transparent-motion signals. , 2009, Journal of vision.

[15]  G A Orban,et al.  Velocity discrimination in central and peripheral visual field. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[16]  Olivier Chapuis,et al.  Using rhythmic patterns as an input method , 2012, CHI.

[17]  Barbara Tversky,et al.  Animation: can it facilitate? , 2002, Int. J. Hum. Comput. Stud..

[18]  Jörn Kohlhammer,et al.  Perception of direction changes in animated data visualization , 2008, APGV '08.

[19]  Fei-Yue Wang,et al.  A Survey of Traffic Data Visualization , 2015, IEEE Transactions on Intelligent Transportation Systems.

[20]  Colin Ware,et al.  Motion to support rapid interactive queries on node--link diagrams , 2004, TAP.

[21]  Martin Wattenberg,et al.  Visual exploration of multivariate graphs , 2006, CHI.

[22]  Romain Vuillemot,et al.  Visualizing the Scale of World Economies , 2015 .

[23]  Masaru Kitsuregawa,et al.  Visual Exploration of Changes in Passenger Flows and Tweets on Mega-City Metro Network , 2016, IEEE Transactions on Big Data.

[24]  Randolph Blake,et al.  Perception of visual motion , 2002 .

[25]  Daniel Weiskopf,et al.  On the role of color in the perception of motion in animated visualizations , 2004, IEEE Visualization 2004.

[26]  Christophe Hurter,et al.  Towards Unambiguous Edge Bundling: Investigating Confluent Drawings for Network Visualization , 2017, IEEE Transactions on Visualization and Computer Graphics.

[27]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[28]  Thecla Schiphorst,et al.  Enhancing Visualization with Expressive Motion , 2016, HVEI.

[29]  Steve Vinoski,et al.  Node.js: Using JavaScript to Build High-Performance Network Programs , 2010, IEEE Internet Comput..

[30]  Colin Ware,et al.  Filtering and Brushing with Motion , 2002, Inf. Vis..

[31]  M. Sheelagh T. Carpendale,et al.  Exploring the design space of interactive link curvature in network diagrams , 2012, AVI.

[32]  Dieter W. Fellner,et al.  Visual analysis of contagion in networks , 2015, Inf. Vis..

[33]  P. McLeod,et al.  Reversing visual search asymmetries with conjunctions of movement and orientation , 1992 .

[34]  Ken Nakayama,et al.  Serial and parallel processing of visual feature conjunctions , 1986, Nature.

[35]  Steven L Franconeri,et al.  Selecting and tracking multiple objects. , 2015, Wiley interdisciplinary reviews. Cognitive science.

[36]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[37]  P. McLeod,et al.  Motion coherence and conjunction search: Implications for guided search theory , 1992, Perception & psychophysics.

[38]  Min Chen,et al.  Over Two Decades of Integration‐Based, Geometric Flow Visualization , 2010, Comput. Graph. Forum.

[39]  Jean-Daniel Fekete,et al.  An extended evaluation of the readability of tapered, animated, and textured directed-edge representations in node-link graphs , 2011, 2011 IEEE Pacific Visualization Symposium.

[40]  David Whitney,et al.  How Capacity Limits of Attention Influence Information Visualization Effectiveness , 2012, IEEE Transactions on Visualization and Computer Graphics.

[41]  Graham J. Wills,et al.  Visualizing Network Data , 2009, Encyclopedia of Database Systems.

[42]  David Whitney,et al.  Temporal thresholds for feature detection in flow visualization , 2010, APGV '10.

[43]  Robert S. Laramee,et al.  Smooth Graphs for Visual Exploration of Higher-Order State Transitions , 2009, IEEE Transactions on Visualization and Computer Graphics.

[44]  S. Mateeff,et al.  Temporal thresholds and reaction time to changes in velocity of visual motion , 1995, Vision Research.

[45]  Kwan-Liu Ma,et al.  Multiple Uncertainties in Time-Variant Cosmological Particle Data , 2008, 2008 IEEE Pacific Visualization Symposium.

[46]  R. Ivry,et al.  Asymmetry in visual search for targets defined by differences in movement speed. , 1992, Journal of experimental psychology. Human perception and performance.

[47]  William Knight,et al.  Moving icons as a human interrupt , 1992, Int. J. Hum. Comput. Interact..

[48]  Chao Feng,et al.  Evaluating affective features of 3D motionscapes , 2014, SAP.

[49]  Paul Murray,et al.  Evaluating density-based motion for big data visual analytics , 2014, 2014 IEEE International Conference on Big Data (Big Data).

[50]  Christopher G. Healey,et al.  Visualizing data with motion , 2005, VIS 05. IEEE Visualization, 2005..

[51]  Florence March,et al.  2016 , 2016, Affair of the Heart.

[52]  Allan R. Wilks,et al.  Visualizing Network Data , 1995, IEEE Trans. Vis. Comput. Graph..

[53]  Lyn Bartram,et al.  Perceptual and interpretative properties of motion for information visualization , 1997, NPIV '97.

[54]  Till Nagel,et al.  Staged analysis: From evocative to comparative visualizations of Urban mobility , 2017, 2017 IEEE VIS Arts Program (VISAP).

[55]  D. L. Macadam Visual Sensitivities to Color Differences in Daylight , 1942 .

[56]  Christophe Hurter,et al.  Animations 25 Years Later: New Roles and Opportunities , 2016, AVI.

[57]  Christophe Hurter,et al.  Visualization, Selection, and Analysis of Traffic Flows , 2016, IEEE Transactions on Visualization and Computer Graphics.

[58]  F. Heider,et al.  An experimental study of apparent behavior , 1944 .

[59]  Lyn Bartram,et al.  Animating Causal Overlays , 2008, Comput. Graph. Forum.

[60]  Gustav Theodor Fechner,et al.  Elements of psychophysics , 1966 .

[61]  S. Mateeff,et al.  The time it takes to detect changes in speed and direction of visual motion , 1998, Vision Research.

[62]  Stefan Buschmann,et al.  Animated visualization of spatial–temporal trajectory data for air-traffic analysis , 2016, The Visual Computer.

[63]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[64]  Pedro Cruz,et al.  Wrongfully right : applications of semantic figurative metaphors 
 in information visualization , 2015 .

[65]  Michael Burch,et al.  The State of the Art in Visualizing Dynamic Graphs , 2014, EuroVis.

[66]  P. Jaccard THE DISTRIBUTION OF THE FLORA IN THE ALPINE ZONE.1 , 1912 .