Fast-electron transport in cylindrically laser-compressed matter
暂无分享,去创建一个
L. Volpe | D. Batani | C. Fourment | S. Hulin | Maria Richetta | C. Spindloe | Fabien Dorchies | Carlo Benedetti | Michel Koenig | E. Brambrink | P. Koester | Leonida A. Gizzi | Luca Labate | Wigen Nazarov | F. Pérez | Marco Galimberti | Andrea Sgattoni | S. D. Baton | Philippe Nicolai | John Pasley | J. J. Santos | A. J. Mackinnon | S. Chawla | F. N. Beg | Alessandra Ravasio | R. Heathcote | R. Jafer | A. McPhee | B Vauzour | Kate Lancaster | Drew Higginson
[1] Jérôme Breil,et al. A cell‐centred arbitrary Lagrangian–Eulerian (ALE) method , 2008 .
[2] P. Norreys,et al. Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields. , 2009, Physical review letters.
[3] Rémi Abgrall,et al. A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..
[4] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[5] O. L. Landen,et al. X-Ray Line Measurements with High Efficiency Bragg Crystals , 2004 .
[6] R. Kodama,et al. Fast heating of cylindrically imploded plasmas by petawatt laser light. , 2008, Physical review letters.
[7] G. Zimmerman,et al. A new quotidian equation of state (QEOS) for hot dense matter , 1988 .
[8] Jérôme Breil,et al. A second‐order cell‐centered Lagrangian scheme for two‐dimensional compressible flow problems , 2008 .
[9] Michael D. Perry,et al. Ignition and high gain with ultrapowerful lasers , 1994 .
[10] A. Ravasio,et al. Density measurement of low- Z shocked material from monochromatic x-ray two-dimensional images. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[11] R. More,et al. An electron conductivity model for dense plasmas , 1984 .
[12] P. Norreys,et al. Fast electron deposition in laser shock compressed plastic targets , 1998 .
[13] M. Koenig,et al. Novel diagnostic of low-Z shock compressed material , 2006 .