Improving the Accuracy of Di erential{Based Optical Flow Algorithms

This work deals with the design of the low{level stages of any di erential{ based optical ow algorithm. The problem is the accurate estimaton of the spatio{temporal derivatives of the moving image, to be used in the solution of the gradient constraint equation. We claim that the \traditional" techniques for the partial derivatives estimation can be improved by i) exploiting all the information provided by both elds within a frame in the case of interlaced scanning systems, ii) adopting prolate spheroidal lters instead of gaussian lters in order to get rid of noise and aliasing, and iii) using larger size di erentiators, designed by a weighted least squares technique.

[1]  Franklin F. Kuo,et al.  System analysis by digital computer , 1966 .

[2]  Miquel Bertran,et al.  Digital filtering and prolate functions , 1972 .

[3]  Keh-Shew Lu,et al.  DIGITAL FILTER DESIGN , 1973 .

[4]  P. M. Prenter Splines and variational methods , 1975 .

[5]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[6]  Francis Kretz,et al.  Échantillonnage des images de télévision: analyse dans le domaine spatio-temporel et dans le domaine de Fourier , 1981 .

[7]  Shiro Usui,et al.  Digital Low-Pass Differentiation for Biological Signal Processing , 1982, IEEE Transactions on Biomedical Engineering.

[8]  E. Dubois,et al.  The sampling and reconstruction of time-varying imagery with application in video systems , 1985, Proceedings of the IEEE.

[9]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[10]  A.K. Krishnamurthy,et al.  Multidimensional digital signal processing , 1985, Proceedings of the IEEE.

[11]  Hans-Hellmut Nagel,et al.  An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Tomaso A. Poggio,et al.  On Edge Detection , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Behrooz Kamgar-Parsi,et al.  Evaluation of quantization error in computer vision , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  A. Verri,et al.  Mathematical properties of the two-dimensional motion field: from singular points to motion parameters , 1989 .

[15]  Martin Vetterli,et al.  A multiresolution approach to motion estimation and interpolation with application to coding of digital HDTV , 1990, IEEE International Symposium on Circuits and Systems.

[16]  Bengt Carlsson,et al.  Optimal differentiation based on stochastic signal models , 1991, IEEE Trans. Signal Process..

[17]  Roberto Manduchi,et al.  On the relationships between motion and aliasing in typical video rasters , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[18]  Olivier D. Faugeras,et al.  Robust and fast computation of unbiased intensity derivatives in images , 1992, ECCV.

[19]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[20]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 1993, 1993 (4th) International Conference on Computer Vision.

[21]  Roberto Manduchi,et al.  Multistage sampling structure conversion of video signals , 1993, IEEE Trans. Circuits Syst. Video Technol..