Using cognitive model to automatically analyze Chinese predicate

This paper presents an cognitive approach to semantic role labeling in Chinese based on an extension of Construction-Integration (CI) model. The method can implicitly integrate more contextual and general knowledge into the calculating process in contrast with the machine learning methods. First, we define a proposition representation as the basic unit for semantic role labeling using CI model. Then the contextually appropriate propositions will be strengthened and inappropriate ones will be inhibited by simulating the spreading activation of human mind. Finally, experimental results show an encouraging performance on Chinese PropBank (CPB) and other two datasets.

[1]  Marine Carpuat,et al.  Semantic role labeling with Boosting, SVMs, Maximum Entropy, SNOW, and Decision Lists , 2004, SENSEVAL@ACL.

[2]  Sanda M. Harabagiu,et al.  Using Predicate-Argument Structures for Information Extraction , 2003, ACL.

[3]  Nianwen Xue,et al.  Calibrating Features for Semantic Role Labeling , 2004, EMNLP.

[4]  W. Kintsch The role of knowledge in discourse comprehension: a construction-integration model. , 1988, Psychological review.

[5]  Guodong Zhou,et al.  A Grammar-driven Convolution Tree Kernel for Semantic Role Classification , 2007, ACL.

[6]  Michael Collins,et al.  Convolution Kernels for Natural Language , 2001, NIPS.

[7]  Hwee Tou Ng,et al.  Semantic Argument Classification Exploiting Argument Interdependence , 2005, IJCAI.

[8]  Alessandro Moschitti,et al.  A Study on Convolution Kernels for Shallow Statistic Parsing , 2004, ACL.

[9]  Mirella Lapata,et al.  Using Semantic Roles to Improve Question Answering , 2007, EMNLP.

[10]  Amal Guha,et al.  Convergence of the Integration Dynamics of the Construction-Integration Model. , 2001, Journal of mathematical psychology.

[11]  Roger Levy,et al.  Is it Harder to Parse Chinese, or the Chinese Treebank? , 2003, ACL.

[12]  Collin F. Baker,et al.  Frame semantics for text understanding , 2001 .

[13]  John B. Lowe,et al.  The Berkeley FrameNet Project , 1998, ACL.

[14]  Daniel Jurafsky,et al.  Automatic Labeling of Semantic Roles , 2002, CL.

[15]  Eduardo Vidal-Abarca,et al.  A Connectionist Extension to Kintsch's Construction–Integration Model , 2006 .

[16]  Daniel Gildea,et al.  The Proposition Bank: An Annotated Corpus of Semantic Roles , 2005, CL.

[17]  Zoubin Ghahramani,et al.  Learning from labeled and unlabeled data with label propagation , 2002 .

[18]  Peter Naur Computing versus human thinking , 2006, UIST.

[19]  Dan Roth,et al.  The Necessity of Syntactic Parsing for Semantic Role Labeling , 2005, IJCAI.

[20]  Refining the Representational Basis of the Construction-Integration Model of Text Comprehension with Syntactic Cues , 2001 .

[21]  Nianwen Xue,et al.  Automatic Semantic Role Labeling for Chinese Verbs , 2005, IJCAI.

[22]  Minhua Ma,et al.  Visual Semantics and Ontology of Eventive Verbs , 2004, IJCNLP.

[23]  James P. Callan,et al.  Structured retrieval for question answering , 2007, SIGIR.