Incentive strategies and equilibria for dynamic games with delayed information

[1]  Harri Ehtamo,et al.  Construction of optimal affine incentive strategies for linear-quadratic stackelberg games , 1985, 1985 24th IEEE Conference on Decision and Control.

[2]  Jose B. Cruz,et al.  Stackelberg strategies and incentives in multiperson deterministic decision problems , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  Alain Haurie,et al.  Cooperative Equilibria in Differential Games , 1983, 1983 American Control Conference.

[4]  B. Towiski A concept of cooperative equilibrium for dynamic games , 1982 .

[5]  T. Başar,et al.  Existence and derivation of optimal affine incentive schemes for Stackelberg games with partial information: a geometric approach† , 1982 .

[6]  R. Radner Monitoring Cooperative Agreements in a Repeated Principal-Agent Relationship , 1981 .

[7]  B. Tolwinski Closed-loop Stackelberg solution to a multistage linear-quadratic game , 1981 .

[8]  Peter B. Luh,et al.  A control-theoretic view on incentives , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[9]  G. P. Papavassilopoulos,et al.  Sufficient conditions for Stackelberg and Nash strategies with memory , 1980 .

[10]  G. Papavassilopoulos Leader-Follower and Nash Strategies with State Information. , 1979 .

[11]  T. Başar,et al.  Closed-loop Stackelberg strategies with applications in the optimal control of multilevel systems , 1979 .

[12]  W. T. Martin,et al.  An unsymmetric Fubini theorem , 1941 .