Optimal generation of single-qubit operation from an always-on interaction by algebraic decoupling

We present a direct algebraic decoupling approach to generate arbitrary single-qubit operations in the presence of a constant interaction by application of local control signals. To overcome the difficulty of undesirable entanglement generated by the untunable interaction, we use an algebraic approach to decouple the two-qubit Hamiltonian into two single-qubit Hamiltonians and the desired single-qubit operations are then generated by steering on the single-qubit operation spaces. Specifically, we derive local control fields that are designed to drive the qubit systems back to unentangled states at the end of the time interval over which the desired single-qubit operation is completed. As a result of the decoupling, optimal control strategies may be carried out on single qubit subspaces rather than on the full coupled qubit Hilbert space. This approach is seen to be particularly relevant for the physical implementation of solid-state quantum computation.

[1]  Thaddeus D. Ladd,et al.  Coherence time of decoupled nuclear spins in silicon , 2005 .

[2]  K. B. Whaley,et al.  Generation of quantum logic operations from physical Hamiltonians (13 pages) , 2004, quant-ph/0412169.

[3]  S. Sarma,et al.  Spin quantum computation in silicon nanostructures , 2004, cond-mat/0411755.

[4]  Timothy F. Havel,et al.  Selective coherence transfers in homonuclear dipolar coupled spin systems , 2004, quant-ph/0408158.

[5]  K. B. Whaley,et al.  Qubit coherence control in a nuclear spin bath , 2004, cond-mat/0406090.

[6]  L. Vandersypen,et al.  NMR techniques for quantum control and computation , 2004, quant-ph/0404064.

[7]  K. B. Whaley,et al.  Entangling flux qubits with a bipolar dynamic inductance , 2004, quant-ph/0406049.

[8]  O. Astafiev,et al.  Demonstration of conditional gate operation using superconducting charge qubits , 2003, Nature.

[9]  D. Averin,et al.  Variable electrostatic transformer: controllable coupling of two charge qubits. , 2003, Physical review letters.

[10]  F. Wellstood,et al.  Quantum logic gates for coupled superconducting phase qubits. , 2003, Physical review letters.

[11]  J. Twamley Quantum-cellular-automata quantum computing with endohedral fullerenes , 2002, quant-ph/0210202.

[12]  Simon C Benjamin,et al.  Quantum computing with an always-on Heisenberg interaction. , 2002, Physical review letters.

[13]  John Clarke,et al.  Quiet Readout of Superconducting Flux States , 2002 .

[14]  G. Guo,et al.  Quantum computation with untunable couplings. , 2002, Physical review letters.

[15]  Dieter Suter,et al.  Scalable architecture for spin-based quantum computers with a single type of gate , 2002 .

[16]  Timothy F. Havel,et al.  Design of strongly modulating pulses to implement precise effective Hamiltonians for quantum information processing , 2002, quant-ph/0202065.

[17]  D A Lidar,et al.  Creating decoherence-free subspaces using strong and fast pulses. , 2002, Physical review letters.

[18]  Daniel A. Lidar,et al.  Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. , 2001, Physical review letters.

[19]  L. Viola Quantum control via encoded dynamical decoupling , 2001, quant-ph/0111167.

[20]  Daniel A. Lidar,et al.  Reducing constraints on quantum computer design by encoded selective recoupling. , 2001, Physical review letters.

[21]  Y. Makhlin,et al.  Quantum-state engineering with Josephson-junction devices , 2000, cond-mat/0011269.

[22]  D. D'Alessandro,et al.  Optimal control of two-level quantum systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[23]  D. Leung,et al.  Efficient implementation of selective recoupling in heteronuclear spin systems using hadamard matrices , 1999, quant-ph/9904100.

[24]  Orlando,et al.  Josephson Persistent-Current Qubit , 2022 .

[25]  E. Knill,et al.  Universal Control of Decoupled Quantum Systems , 1999, Physical Review Letters.

[26]  D. DiVincenzo,et al.  Coupled quantum dots as quantum gates , 1998, cond-mat/9808026.

[27]  Ray Freeman,et al.  Shaped radiofrequency pulses in high resolution NMR , 1998 .

[28]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[29]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[30]  E. Zuiderweg,et al.  Efficiencies of Double- and Triple-Resonance J Cross Polarization in Multidimensional NMR , 1995 .

[31]  E. Kupce,et al.  Close Encounters between Soft Pulses , 1995 .

[32]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[33]  J. F. Cornwell,et al.  Group Theory in Physics: An Introduction , 1984 .

[34]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .