Stochastic estimation of dynamical variables

Estimating the parameters governing the dynamics of a system is a prerequisite for its optimal control. We present a simple but powerful method that we call STEADY, for STochastic EstimAtion of DYnamical variables, to estimate the Hamiltonian (or Lindbladian) governing a quantum system of a few qubits. STEADY makes efficient use of all measurements and it saturates the information-theoretic limits for such an estimator. Importantly, it is inherently robust to state preparation and measurement errors. It is not limited to evaluating only a fixed set of possible gates, rather it estimates the complete Hamiltonian of the system. The estimator is applicable to any Hamiltonian that can be written as a piecewise-differentiable function and it can easily include estimators for the non-unitary parameters as well. At the heart of our approach is a stochastic gradient descent over the difference between experimental measurement and model prediction.

[1]  Andrew N. Jordan,et al.  Rapid Estimation of Drifting Parameters in Continuously Measured Quantum Systems , 2016, 1606.01407.

[2]  Richard Kueng,et al.  Comparing Experiments to the Fault-Tolerance Threshold. , 2015, Physical review letters.

[3]  P. Humphreys,et al.  Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. , 2017, Physical review letters.

[4]  H. Rabitz,et al.  Control of quantum phenomena: past, present and future , 2009, 0912.5121.

[5]  Tommaso Calarco,et al.  Chopped random-basis quantum optimization , 2011, 1103.0855.

[6]  King,et al.  Experimental Determination of the Motional Quantum State of a Trapped Atom. , 1996, Physical review letters.

[7]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[8]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.

[9]  D J Egger,et al.  Adaptive hybrid optimal quantum control for imprecisely characterized systems. , 2014, Physical review letters.

[10]  Liang Jiang,et al.  Universal control of an oscillator with dispersive coupling to a qubit , 2015, 1502.08015.

[11]  Erik Nielsen,et al.  Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit , 2013, 1310.4492.

[12]  P. Zoller,et al.  Complete Characterization of a Quantum Process: The Two-Bit Quantum Gate , 1996, quant-ph/9611013.

[13]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[14]  Barry C Sanders,et al.  High-Fidelity Single-Shot Toffoli Gate via Quantum Control. , 2015, Physical review letters.

[15]  Herschel Rabitz,et al.  Data-driven gradient algorithm for high-precision quantum control , 2017, 1712.01780.

[16]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.

[17]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[18]  Barry C. Sanders,et al.  Learning in quantum control: High-dimensional global optimization for noisy quantum dynamics , 2016, Neurocomputing.

[19]  Tzyh Jong Tarn,et al.  Fidelity-Based Probabilistic Q-Learning for Control of Quantum Systems , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[20]  B. Shore,et al.  Robust creation and phase-sensitive probing of superposition states via stimulated Raman adiabatic passage (STIRAP) with degenerate dark states , 1998 .

[21]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[22]  M. A. Rol,et al.  Restless Tuneup of High-Fidelity Qubit Gates , 2016, 1611.04815.

[23]  Liang Jiang,et al.  Cavity State Manipulation Using Photon-Number Selective Phase Gates. , 2015, Physical review letters.

[24]  D. Schuster,et al.  Speedup for quantum optimal control from automatic differentiation based on graphics processing units , 2016, 1612.04929.

[25]  H Neven,et al.  A blueprint for demonstrating quantum supremacy with superconducting qubits , 2017, Science.

[26]  Michael J. Biercuk,et al.  Prediction and real-time compensation of qubit decoherence via machine learning , 2016, Nature Communications.

[27]  Law,et al.  Arbitrary control of a quantum electromagnetic field. , 1996, Physical review letters.

[28]  Jay M. Gambetta,et al.  Self-Consistent Quantum Process Tomography , 2012, 1211.0322.

[29]  A N Cleland,et al.  Optimal quantum control using randomized benchmarking. , 2014, Physical review letters.

[30]  Mankei Tsang,et al.  Time-symmetric quantum theory of smoothing. , 2009, Physical review letters.

[31]  Liang Jiang,et al.  Quantum channel construction with circuit quantum electrodynamics , 2016, 1611.03463.

[32]  O. Moussa,et al.  Robust and efficient in situ quantum control , 2014, 1409.3172.

[33]  Martin Rötteler,et al.  REVS: A Tool for Space-Optimized Reversible Circuit Synthesis , 2017, RC.

[34]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[35]  Keiji matsumoto A new approach to the Cramér-Rao-type bound of the pure-state model , 2002 .

[36]  Lorien Y. Pratt,et al.  Discriminability-Based Transfer between Neural Networks , 1992, NIPS.

[37]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[38]  Klaus Molmer,et al.  Qudit quantum computation in the Jaynes-Cummings model , 2012, 1210.4488.

[39]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[40]  Debbie W. Leung,et al.  Universal simulation of Markovian quantum dynamics , 2001 .

[41]  Martin Rötteler,et al.  Verified Compilation of Space-Efficient Reversible Circuits , 2016, CAV.

[42]  Marin Bukov,et al.  Machine Learning Meets Quantum State Preparation. The Phase Diagram of Quantum Control , 2017 .

[43]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[44]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[45]  Hartmut Neven,et al.  Universal quantum control through deep reinforcement learning , 2019 .

[46]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[47]  J. Emerson,et al.  Scalable noise estimation with random unitary operators , 2005, quant-ph/0503243.

[48]  Stuart A. Rice,et al.  Control of selectivity of chemical reaction via control of wave packet evolution , 1985 .

[49]  Shelby Kimmel,et al.  Robust Extraction of Tomographic Information via Randomized Benchmarking , 2013, 1306.2348.

[50]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[51]  Michael Innes,et al.  Don't Unroll Adjoint: Differentiating SSA-Form Programs , 2018, ArXiv.

[52]  Martin Rötteler,et al.  Design automation for quantum architectures , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[53]  Jing Yang,et al.  Optimal measurements for quantum multiparameter estimation with general states , 2018, Physical Review A.

[54]  H. Rabitz,et al.  Optimal control of quantum-mechanical systems: Existence, numerical approximation, and applications. , 1988, Physical review. A, General physics.

[55]  Emmanuel Flurin,et al.  Using a Recurrent Neural Network to Reconstruct Quantum Dynamics of a Superconducting Qubit from Physical Observations , 2018, Physical Review X.

[56]  Daniel Greenbaum,et al.  Introduction to Quantum Gate Set Tomography , 2015, 1509.02921.