Guest editorial: special issue on algorithms and architectures for real-time image and video enhancement

Recent advances in real-time image and video enhancement are enabling innovations in a broad range of applications including biomedicine, intelligent transportation, driving assistance, consumer electronics, telecommunication, robotics and surveillance. These innovations encompass complexity-aware algorithms and new hardware– software (HW–SW) architectures and aims at (1) improved visualization performance; (2) acceleration of processing (real-time instead of off-line computation); and (3) complexity reduction to meet demands involving device size, power consumption, cost of target applications such as battery-powered mobile/wearable devices, or low-cost large volume markets. This special issue presents nine papers covering different real-time algorithms and cost-efficient architectures for several image/video enhancement techniques. The accepted papers are from different international institutions located in North and South America, Europe and Asia. The research on image/video enhancement used to be mainly focused on multimedia, consumer or telecom applications. However, this special issue demonstrates the growing interest for image/video enhancement techniques to fields such as biomedicine (capsule endoscopy and neuroscience test), robotics for automation in agriculture, automotive driving assistance, and aerial surveillance. The discussed techniques include object tracking, image and video compression, edge extraction/detection for image analysis, anomaly detection, lighting conditions improvement, and contrast enhancement. The first paper by Khan et al. presents a subsamplingbased image compressor for capsule endoscopic system which is aimed at reducing the chip area and power consumption, while maintaining an acceptable video quality. A low-complexity algorithm, suitable for VLSI implementation, is developed around some special features of endoscopic images and consists of a differential pulse code modulation followed by Golomb–Rice coding. An image corner clipping algorithm is also presented. The reconstructed images are verified by medical doctors for acceptability. Compared to other transform-based algorithms targeted to capsule endoscopy, the proposed raster-scanbased scheme performs very strongly with a compression ratio of 80% and a very high reconstruction PSNR (over 45 dB). The second paper by Armato et al. also deals with biomedical-related applications. This work is focused on exploring and comparing several photometric normalization techniques to improve eye gaze tracking (EGT) systems during light changes. EGT is developed for scientific exploration in controlled environments where it is used in ophthalmology, neurology, psychology, and related areas to study oculomotor characteristics and abnormalities, and their relation to cognition and mental states. The illumination is one of the most restrictive limitations in EGT, due to the problem of pupil center estimation during illumination S. Saponara (&) Dip. Ingegneria della Informazione, Universita di Pisa, via G. Caruso 16, 56122 Pisa, Italy e-mail: sergio.saponara@iet.unipi.it