Development of fungal cell factories for the production of secondary metabolites: Linking genomics and metabolism

The genomic era has revolutionized research on secondary metabolites and bioinformatics methods have in recent years revived the antibiotic discovery process after decades with only few new active molecules being identified. New computational tools are driven by genomics and metabolomics analysis, and enables rapid identification of novel secondary metabolites. To translate this increased discovery rate into industrial exploitation, it is necessary to integrate secondary metabolite pathways in the metabolic engineering process. In this review, we will describe the novel advances in discovery of secondary metabolites produced by filamentous fungi, highlight the utilization of genome-scale metabolic models (GEMs) in the design of fungal cell factories for the production of secondary metabolites and review strategies for optimizing secondary metabolite production through the construction of high yielding platform cell factories.

[1]  K. Ochi,et al.  New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters , 2012, Applied Microbiology and Biotechnology.

[2]  H. Yoshikawa,et al.  Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum , 2002, Molecular Genetics and Genomics.

[3]  B. Moore,et al.  Identification of Thiotetronic Acid Antibiotic Biosynthetic Pathways by Target-directed Genome Mining. , 2015, ACS chemical biology.

[4]  T. Gabaldón,et al.  Genome, Transcriptome, and Functional Analyses of Penicillium expansum Provide New Insights Into Secondary Metabolism and Pathogenicity. , 2015, Molecular plant-microbe interactions : MPMI.

[5]  Michael A. Skinnider,et al.  Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM) , 2015, Nucleic acids research.

[6]  Jason A. Papin,et al.  Genome-scale microbial in silico models: the constraints-based approach. , 2003, Trends in biotechnology.

[7]  Roger G. Linington,et al.  Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters , 2014, Cell.

[8]  Jens Nielsen,et al.  Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. , 2013, Metabolic engineering.

[9]  Martha B. Arnaud,et al.  Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae , 2013, BMC Microbiology.

[10]  R. Vreeken,et al.  Genomic mutational analysis of the impact of the classical strain improvement program on β–lactam producing Penicillium chrysogenum , 2015, BMC Genomics.

[11]  J. Nielsen,et al.  Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism. , 2005, Genome research.

[12]  P. Roche,et al.  Macropinocytosis in phagocytes: regulation of MHC class-II-restricted antigen presentation in dendritic cells , 2015, Front. Physiol..

[13]  R. J. Frandsen,et al.  Heterologous expression of MlcE in Saccharomyces cerevisiae provides resistance to natural and semi-synthetic statins , 2015, Metabolic engineering communications.

[14]  U. Mortensen,et al.  A CRISPR-Cas9 System for Genetic Engineering of Filamentous Fungi , 2015, PloS one.

[15]  N. Keller,et al.  Strategies for mining fungal natural products , 2014, Journal of Industrial Microbiology & Biotechnology.

[16]  P. Barr,et al.  Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[17]  R. Seipke Strain-Level Diversity of Secondary Metabolism in Streptomyces albus , 2015, PloS one.

[18]  H. Alper,et al.  Systems metabolic engineering: Genome‐scale models and beyond , 2010, Biotechnology journal.

[19]  Julian Brandl,et al.  FunGeneClusterS: Predicting fungal gene clusters from genome and transcriptome data , 2016, Synthetic and systems biotechnology.

[20]  Cheng Zhang,et al.  Applications of Genome-Scale Metabolic Models in Biotechnology and Systems Medicine , 2016, Front. Physiol..

[21]  M. Andersen,et al.  Current state of genome-scale modeling in filamentous fungi , 2015, Biotechnology Letters.

[22]  Inna Dubchak,et al.  MycoCosm portal: gearing up for 1000 fungal genomes , 2013, Nucleic Acids Res..

[23]  Jens Nielsen,et al.  Systems Analysis Unfolds the Relationship between the Phosphoketolase Pathway and Growth in Aspergillus nidulans , 2008, PloS one.

[24]  Min Woo Kim,et al.  Reconstruction of a high‐quality metabolic model enables the identification of gene overexpression targets for enhanced antibiotic production in Streptomyces coelicolor A3(2) , 2014, Biotechnology journal.

[25]  Zachary L. Fowler,et al.  Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. , 2011, Metabolic engineering.

[26]  M. Medema,et al.  Computational strategies for genome-based natural product discovery and engineering in fungi. , 2016, Fungal genetics and biology : FG & B.

[27]  Michael A Fischbach,et al.  Computational approaches to natural product discovery. , 2015, Nature chemical biology.

[28]  M. Bibb,et al.  Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters , 2011, Microbial biotechnology.

[29]  L. Quek,et al.  Reconstruction of the Saccharopolyspora erythraea genome-scale model and its use for enhancing erythromycin production , 2012, Antonie van Leeuwenhoek.

[30]  Neil L Kelleher,et al.  A Roadmap for Natural Product Discovery Based on Large-Scale Genomics and Metabolomics , 2014, Nature chemical biology.

[31]  J. Nielsen,et al.  Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites , 2016, Scientific Reports.

[32]  Tilmann Weber,et al.  The evolution of genome mining in microbes - a review. , 2016, Natural product reports.

[33]  Byung-Gee Kim,et al.  Transcriptomics‐based strain optimization tool for designing secondary metabolite overproducing strains of Streptomyces coelicolor , 2016, Biotechnology and bioengineering.

[34]  Anna Eliasson Lantz,et al.  Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. , 2008, Metabolic engineering.

[35]  J. Nielsen,et al.  Studies of the Production of Fungal Polyketides in Aspergillus nidulans by Using Systems Biology Tools , 2009, Applied and Environmental Microbiology.

[36]  Kyle R. Conway,et al.  ClusterMine360: a database of microbial PKS/NRPS biosynthesis , 2012, Nucleic Acids Res..

[37]  Ralph A. Cacho,et al.  Next-generation sequencing approach for connecting secondary metabolites to biosynthetic gene clusters in fungi , 2015, Front. Microbiol..

[38]  C. Walsh,et al.  Fungal indole alkaloid biosynthesis: genetic and biochemical investigation of the tryptoquialanine pathway in Penicillium aethiopicum. , 2011, Journal of the American Chemical Society.

[39]  J. Bennett,et al.  Fungal secondary metabolism — from biochemistry to genomics , 2005, Nature Reviews Microbiology.

[40]  A. Driessen,et al.  CRISPR/Cas9 Based Genome Editing of Penicillium chrysogenum. , 2016, ACS synthetic biology.

[41]  Byung-Gee Kim,et al.  BeReTa: a systematic method for identifying target transcriptional regulators to enhance microbial production of chemicals , 2017, Bioinform..

[42]  Wilfred A van der Donk,et al.  Discovery of phosphonic acid natural products by mining the genomes of 10,000 actinomycetes , 2015, Proceedings of the National Academy of Sciences.

[43]  Peter Man-Un Ung,et al.  Automated genome mining for natural products , 2009, BMC Bioinformatics.

[44]  G. Turner,et al.  delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. , 1996, Molecular & general genetics : MGG.

[45]  János Bérdy,et al.  Bioactive microbial metabolites. , 2005, The Journal of antibiotics.

[46]  Krystle L. Chavarria,et al.  Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora , 2014, Proceedings of the National Academy of Sciences.

[47]  J. Vederas,et al.  Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. , 1999, Science.

[48]  Pavel A. Pevzner,et al.  NRPquest: Coupling Mass Spectrometry and Genome Mining for Nonribosomal Peptide Discovery , 2014, Journal of natural products.

[49]  A L Demain,et al.  Small bugs, big business: the economic power of the microbe. , 2000, Biotechnology advances.

[50]  C. Kallenberg,et al.  Use of mycophenolic acid in non-transplant renal diseases. , 2007, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[51]  Carla S. Jones,et al.  Minimum Information about a Biosynthetic Gene cluster. , 2015, Nature chemical biology.

[52]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[53]  G. Braus,et al.  One Juliet and four Romeos: VeA and its methyltransferases , 2015, Front. Microbiol..

[54]  Intawat Nookaew,et al.  The RAVEN Toolbox and Its Use for Generating a Genome-scale Metabolic Model for Penicillium chrysogenum , 2013, PLoS Comput. Biol..

[55]  Liisa Holm,et al.  Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes , 2014, Proceedings of the National Academy of Sciences.

[56]  S. Schuster,et al.  Computing the various pathways of penicillin synthesis and their molar yields , 2016, Biotechnology and bioengineering.

[57]  Rainer Breitling,et al.  Computational tools for the synthetic design of biochemical pathways , 2012, Nature Reviews Microbiology.

[58]  A. Brakhage,et al.  Activation of a Silent Fungal Polyketide Biosynthesis Pathway through Regulatory Cross Talk with a Cryptic Nonribosomal Peptide Synthetase Gene Cluster , 2010, Applied and Environmental Microbiology.

[59]  Christian Jungreuthmayer,et al.  Elementary flux modes in a nutshell: properties, calculation and applications. , 2013, Biotechnology journal.

[60]  Nuno Bandeira,et al.  Automated Genome Mining of Ribosomal Peptide Natural Products , 2014, ACS chemical biology.

[61]  Ana Rita Brochado,et al.  Improved vanillin production in baker's yeast through in silico design , 2010, Microbial cell factories.

[62]  Rustam I. Aminov,et al.  A Brief History of the Antibiotic Era: Lessons Learned and Challenges for the Future , 2010, Front. Microbio..

[63]  Satoshi Omura,et al.  Genome-minimized Streptomyces host for the heterologous expression of secondary metabolism , 2010, Proceedings of the National Academy of Sciences.

[64]  Tilmann Weber,et al.  In silico tools for the analysis of antibiotic biosynthetic pathways. , 2014, International journal of medical microbiology : IJMM.

[65]  T. Weber,et al.  Synthetic Biology of secondary metabolite biosynthesis in actinomycetes: Engineering precursor supply as a way to optimize antibiotic production , 2012, FEBS letters.

[66]  G. Turner,et al.  δ-(L-α-Aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillusnidulans , 1996, Molecular and General Genetics MGG.

[67]  Rainer Breitling,et al.  MultiMetEval: Comparative and Multi-Objective Analysis of Genome-Scale Metabolic Models , 2012, PloS one.

[68]  B. Amichai,et al.  Griseofulvin and its uses. , 1996, International journal of antimicrobial agents.

[69]  A. Demain Regulation of secondary metabolism in fungi , 1986 .

[70]  Nancy P Keller,et al.  Resistance Gene-Guided Genome Mining: Serial Promoter Exchanges in Aspergillus nidulans Reveal the Biosynthetic Pathway for Fellutamide B, a Proteasome Inhibitor. , 2016, ACS chemical biology.

[71]  Pieter C. Dorrestein,et al.  A mass spectrometry-guided genome mining approach for natural product peptidogenomics , 2011, Nature chemical biology.

[72]  B. Palsson,et al.  In silico predictions of Escherichia coli metabolic capabilities are consistent with experimental data , 2001, Nature Biotechnology.

[73]  Jens Nielsen,et al.  Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism , 2013, Journal of Industrial Microbiology & Biotechnology.

[74]  Kristel Bernaerts,et al.  Genome-scale metabolic flux analysis of Streptomyces lividans growing on a complex medium. , 2012, Journal of biotechnology.

[75]  J. Nielsen,et al.  Molecular Basis for Mycophenolic Acid Biosynthesis in Penicillium brevicompactum , 2011, Applied and Environmental Microbiology.

[76]  Kiyoshi Asai,et al.  Motif-Independent Prediction of a Secondary Metabolism Gene Cluster Using Comparative Genomics: Application to Sequenced Genomes of Aspergillus and Ten Other Filamentous Fungal Species , 2014, DNA research : an international journal for rapid publication of reports on genes and genomes.

[77]  Andriy Kovalchuk,et al.  Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum , 2008, Nature Biotechnology.

[78]  C. Hong,et al.  Efficient gene editing in Neurospora crassa with CRISPR technology , 2015, Fungal Biology and Biotechnology.

[79]  Bradley S Moore,et al.  Glycogenomics as a mass spectrometry-guided genome-mining method for microbial glycosylated molecules , 2013, Proceedings of the National Academy of Sciences.

[80]  Rainer Breitling,et al.  Pep2Path: Automated Mass Spectrometry-Guided Genome Mining of Peptidic Natural Products , 2014, PLoS Comput. Biol..

[81]  Marnix H Medema,et al.  Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. , 2016, Fungal genetics and biology : FG & B.

[82]  Axel A. Brakhage,et al.  Regulation of fungal secondary metabolism , 2012, Nature Reviews Microbiology.

[83]  Shu-Lin Chang,et al.  An efficient system for heterologous expression of secondary metabolite genes in Aspergillus nidulans. , 2013, Journal of the American Chemical Society.

[84]  Chad W. Johnston,et al.  Polyketide and nonribosomal peptide retro-biosynthesis and global gene cluster matching. , 2016, Nature chemical biology.

[85]  Jens Nielsen,et al.  Production of natural products through metabolic engineering of Saccharomyces cerevisiae. , 2015, Current opinion in biotechnology.

[86]  John E. Linz,et al.  A key role for vesicles in fungal secondary metabolism , 2009, Proceedings of the National Academy of Sciences.

[87]  J. Keasling,et al.  Engineering Cellular Metabolism , 2016, Cell.

[88]  Neetika Nath,et al.  CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes , 2015, Bioinform..

[89]  Ralph A. Cacho,et al.  Identification of the viridicatumtoxin and griseofulvin gene clusters from Penicillium aethiopicum. , 2010, Chemistry & biology.

[90]  Wendy S. Schackwitz,et al.  Comparative Genome Structure, Secondary Metabolite, and Effector Coding Capacity across Cochliobolus Pathogens , 2013, PLoS genetics.

[91]  Jens Nielsen,et al.  Use of genome‐scale metabolic models for understanding microbial physiology , 2010, FEBS letters.

[92]  J. Cardenas,et al.  Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. , 2016, Metabolic engineering.

[93]  Wolfgang Schmidt-Heck,et al.  Intimate bacterial–fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans , 2009, Proceedings of the National Academy of Sciences.

[94]  J. Frisvad,et al.  Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium , 2004 .

[95]  Victor M. Markowitz,et al.  IMG-ABC: A Knowledge Base To Fuel Discovery of Biosynthetic Gene Clusters and Novel Secondary Metabolites , 2015, mBio.

[96]  Kai Blin,et al.  antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences , 2011, Nucleic Acids Res..

[97]  Xiaoqiang Jia,et al.  Genome-scale metabolic network guided engineering of Streptomyces tsukubaensis for FK506 production improvement , 2013, Microbial Cell Factories.

[98]  Corinna Lange,et al.  Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. , 2007, Nature chemical biology.

[99]  A. Krivoruchko,et al.  Microbial acetyl-CoA metabolism and metabolic engineering. , 2015, Metabolic engineering.

[100]  V. Vinci,et al.  Production of Cephalosporin Intermediates by Feeding Adipic Acid to Recombinant Penicillium chrysogenum Strains Expressing Ring Expansion Activity , 1995, Bio/Technology.

[101]  W. Metcalf,et al.  Comparative genomics of actinomycetes with a focus on natural product biosynthetic genes , 2013, BMC Genomics.

[102]  Kiyoshi Asai,et al.  MIDDAS-M: Motif-Independent De Novo Detection of Secondary Metabolite Gene Clusters through the Integration of Genome Sequencing and Transcriptome Data , 2013, PloS one.

[103]  J. Barrios-González,et al.  Biotechnological production and applications of statins , 2009, Applied Microbiology and Biotechnology.

[104]  Daoyi Guo,et al.  Overproduction of fatty acids in engineered Saccharomyces cerevisiae , 2014, Biotechnology and bioengineering.

[105]  J. Martín,et al.  Secretion systems for secondary metabolites: how producer cells send out messages of intercellular communication. , 2005, Current opinion in microbiology.

[106]  Jun Ishii,et al.  Engineering strategy of yeast metabolism for higher alcohol production , 2011, Microbial cell factories.

[107]  N. D. Da Silva,et al.  Improving polyketide and fatty acid synthesis by engineering of the yeast acetyl-CoA carboxylase. , 2014, Journal of biotechnology.

[108]  K. Patil,et al.  Enhancing sesquiterpene production in Saccharomyces cerevisiae through in silico driven metabolic engineering. , 2009, Metabolic engineering.

[109]  D. Haft,et al.  SMURF: Genomic mapping of fungal secondary metabolite clusters. , 2010, Fungal genetics and biology : FG & B.

[110]  B. Matthews,et al.  The anti-angiogenic agent fumagillin covalently modifies a conserved active-site histidine in the Escherichia coli methionine aminopeptidase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Tilmann Weber,et al.  The secondary metabolite bioinformatics portal: Computational tools to facilitate synthetic biology of secondary metabolite production , 2016, Synthetic and systems biotechnology.

[112]  Jens Nielsen,et al.  Synthetic Biology for Engineering Acetyl Coenzyme A Metabolism in Yeast , 2014, mBio.