Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)

We explore the use of Long short-term memory (LSTM) for anomaly detection in temporal data. Due to the challenges in obtaining labeled anomaly datasets, an unsupervised approach is employed. We tra ...

[1]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[2]  Charu C. Aggarwal,et al.  Outlier Detection for Temporal Data: A Survey , 2014, IEEE Transactions on Knowledge and Data Engineering.

[3]  Nhien-An Le-Khac,et al.  Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks , 2016, FDSE.

[4]  Richard J. Povinelli,et al.  Probabilistic anomaly detection in natural gas time series data , 2016 .

[5]  P J Webros BACKPROPAGATION THROUGH TIME: WHAT IT DOES AND HOW TO DO IT , 1990 .

[6]  Lovekesh Vig,et al.  LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection , 2016, ArXiv.

[7]  Jürgen Schmidhuber,et al.  Applying LSTM to Time Series Predictable through Time-Window Approaches , 2000, ICANN.

[8]  Vysoké Učení,et al.  Statistical Language Models Based on Neural Networks , 2012 .

[9]  Daniel Nikovski,et al.  Anomaly Detection in Real-Valued Multidimensional Time Series , 2014 .

[10]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[11]  Xindong Wu,et al.  10 Challenging Problems in Data Mining Research , 2006, Int. J. Inf. Technol. Decis. Mak..

[12]  Wojciech Zaremba,et al.  An Empirical Exploration of Recurrent Network Architectures , 2015, ICML.

[13]  Lovekesh Vig,et al.  Long Short Term Memory Networks for Anomaly Detection in Time Series , 2015, ESANN.

[14]  Eamonn J. Keogh,et al.  HOT SAX: efficiently finding the most unusual time series subsequence , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[15]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[16]  Mooi Choo Chuah,et al.  ECG Anomaly Detection via Time Series Analysis , 2007, ISPA Workshops.

[17]  Yoshua Bengio,et al.  Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies , 2001 .

[18]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[19]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[20]  Neil Davey,et al.  Time Series Prediction and Neural Networks , 2001, J. Intell. Robotic Syst..

[21]  Geoffrey E. Hinton,et al.  Acoustic Modeling Using Deep Belief Networks , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[22]  Lovekesh Vig,et al.  Anomaly detection in ECG time signals via deep long short-term memory networks , 2015, 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[23]  Subutai Ahmad,et al.  Evaluating Real-Time Anomaly Detection Algorithms -- The Numenta Anomaly Benchmark , 2015, 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA).

[24]  Jürgen Schmidhuber,et al.  Learning to forget: continual prediction with LSTM , 1999 .

[25]  Qian Xu,et al.  MS-LSTM: A multi-scale LSTM model for BGP anomaly detection , 2016, 2016 IEEE 24th International Conference on Network Protocols (ICNP).

[26]  D. George,et al.  Hierarchical Temporal Memory Concepts , Theory , and Terminology , 2006 .

[27]  David J. Hill,et al.  Anomaly detection in streaming environmental sensor data: A data-driven modeling approach , 2010, Environ. Model. Softw..

[28]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[29]  Martin Meckesheimer,et al.  Automatic outlier detection for time series: an application to sensor data , 2007, Knowledge and Information Systems.

[30]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[31]  Yuan Yao,et al.  Online anomaly detection for sensor systems: A simple and efficient approach , 2010, Perform. Evaluation.

[32]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[33]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[34]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[35]  Anne Håkansson,et al.  Portal of Research Methods and Methodologies for Research Projects and Degree Projects , 2013 .

[36]  Thomas G. Dietterich,et al.  Systematic construction of anomaly detection benchmarks from real data , 2013, ODD '13.

[37]  Andrew W. Senior,et al.  Long short-term memory recurrent neural network architectures for large scale acoustic modeling , 2014, INTERSPEECH.

[38]  Erik Marchi,et al.  Non-linear prediction with LSTM recurrent neural networks for acoustic novelty detection , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[39]  R. Tsay,et al.  Outliers in multivariate time series , 2000 .

[40]  Arthur Zimek,et al.  On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study , 2016, Data Mining and Knowledge Discovery.

[41]  Jürgen Schmidhuber,et al.  LSTM: A Search Space Odyssey , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[42]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[43]  Junshui Ma,et al.  Online novelty detection on temporal sequences , 2003, KDD '03.

[44]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[45]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[46]  Benjamin Schrauwen,et al.  Training and Analysing Deep Recurrent Neural Networks , 2013, NIPS.