Nanostructures Replicated by Polymer Molding

This article discusses materials and techniques used to generate polymer replicas of nanostructures by molding, embossing, and printing. Nanostructures are defined as those that have lateral dimensions of less than 100 nm. The effect of spatially confining materials to these dimensions gives rise to physical, electronic, mechanical, magnetic, and optical properties, e.g., quantum behavior, superparamagnetism, depressed melting point, and increased hardness, that differ, at times significantly, from those of microstructures and macrostructures. The fabrication and characterization of nanostructures are important for applications in optics, computation, data storage, specialty materials, and biology. Most processes for producing electrically, magnetically, and optically functional devices containing nanostructures include four basic steps: 1) fabrication of a ‘‘master’’ (i.e., a substrate from which replicas are formed); 2) replication of the master; 3) transfer of the replica into a functional material (e.g., semiconductor or metal); and 4) registration of the pattern of a master (the same as or different than the one used originally) with that of the replica for multilayer structures. This article focuses on the polymers and the molding techniques useful for the second step of this process.

[1]  William J. Dauksher,et al.  Employing Step-and-Flash imprint lithography for gate-level patterning of a MOSFET device , 2003, SPIE Advanced Lithography.

[2]  M. Gower,et al.  157-nm lithography with high numerical aperture lens for sub-70 nm node , 2003 .

[3]  George M. Whitesides,et al.  Patterning Spherical Surfaces at the Two‐Hundred‐Nanometer Scale Using Soft Lithography , 2003 .

[4]  John A Rogers,et al.  A photocurable poly(dimethylsiloxane) chemistry designed for soft lithographic molding and printing in the nanometer regime. , 2003, Journal of the American Chemical Society.

[5]  Mark G. Blamire,et al.  Focused ion beam fabrication of silicon print masters , 2003 .

[6]  Gabi Gruetzner,et al.  Nanoimprint lithography: An alternative nanofabrication approach , 2003 .

[7]  P. Dutta,et al.  Hot microcontact printing for patterning ITO surfaces. Methodology, morphology, microstructure, and OLED charge injection barrier imaging , 2003 .

[8]  Stephen Y. Chou,et al.  Fabrication of 70 nm channel length polymer organic thin-film transistors using nanoimprint lithography , 2002 .

[9]  J. Li,et al.  Melting enthalpy depression of nanocrystals , 2002 .

[10]  O. Inganäs,et al.  Conducting Polymer Nanowires and Nanodots Made with Soft Lithography , 2002 .

[11]  Xiangcheng Sun Microstructure characterization and magnetic properties of nanomaterials , 2002 .

[12]  William J. Dauksher,et al.  High resolution templates for step and flash imprint lithography , 2002 .

[13]  George M Whitesides,et al.  Generation of 30-50 nm structures using easily fabricated, composite PDMS masks. , 2002, Journal of the American Chemical Society.

[14]  Joseph H. Simmons,et al.  Quantum Dot Research: Current State and Future Prospects , 2002 .

[15]  T Andrew Taton,et al.  Nanostructures as tailored biological probes. , 2002, Trends in biotechnology.

[16]  George M. Whitesides,et al.  Improved pattern transfer in soft lithography using composite stamps , 2002 .

[17]  S. Chou,et al.  Fabrication of nanocontacts for molecular devices using nanoimprint lithography , 2002 .

[18]  George M. Whitesides,et al.  Fabrication of palladium-based microelectronic devices by microcontact printing , 2002 .

[19]  L. Guo,et al.  Fabrication of photonic nanostructures in nonlinear optical polymers , 2002 .

[20]  Chung-Yuen Hui,et al.  Constraints on Microcontact Printing Imposed by Stamp Deformation , 2002 .

[21]  P. Prasad,et al.  Nanophotonics: Nanoscale Optical Interactions , 2002 .

[22]  Todd C. Bailey,et al.  Step and Flash Imprint Lithography: An Efficient Nanoscale Printing Technology , 2002 .

[23]  Todd C. Bailey,et al.  Step and flash imprint lithography: Defect analysis , 2001 .

[24]  H. Ryssel,et al.  Limitations of focused ion beam nanomachining , 2001 .

[25]  R. Tsu Challenges in nanoelectronics , 2001 .

[26]  George M. Whitesides,et al.  The art of Building Small. , 2001 .

[27]  G. Whitesides,et al.  Fabrication of mid-infrared frequency-selective surfaces by soft lithography. , 2001, Applied optics.

[28]  George M. Whitesides,et al.  Microscope Projection Photolithography for Rapid Prototyping of Masters with Micron-Scale Features for Use in Soft Lithography , 2001 .

[29]  Todd C. Bailey,et al.  Development and advantages of step-and-flash lithography , 2001 .

[30]  Chad A. Mirkin Dip-Pen Nanolithography: Automated Fabrication of Custom Multicomponent Sub-100-Nanometer Surface Architectures , 2001 .

[31]  Stephen Y. Chou,et al.  Nanoimprint Lithography and Lithographically Induced Self-Assembly , 2001 .

[32]  Yiying Wu,et al.  Melting and Welding Semiconductor Nanowires in Nanotubes , 2001 .

[33]  Todd Sulchek,et al.  Parallel atomic force microscopy with optical interferometric detection , 2001 .

[34]  R. Hull,et al.  Deep submicron microcontact printing on planar and curved substrates utilizing focused ion beam fabricated printheads , 2001 .

[35]  John A. Rogers Rubber stamping for plastic electronics and fiber optics , 2001 .

[36]  G. Whitesides,et al.  Fabrication of High Performance Ceramic Microstructures from a Polymeric Precursor Using Soft Lithography , 2001 .

[37]  Zhaoning Yu,et al.  Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography , 2000 .

[38]  C. Grant Willson,et al.  Step and flash imprint lithography for sub-100-nm patterning , 2000, Advanced Lithography.

[39]  Heinz Schmid,et al.  Siloxane Polymers for High-Resolution, High-Accuracy Soft Lithography , 2000 .

[40]  K. J. Kirk Nanomagnets for sensors and data storage , 2000 .

[41]  Stucky,et al.  Mirrorless lasing from mesostructured waveguides patterned by soft lithography , 2000, Science.

[42]  P. Alivisatos Colloidal quantum dots. From scaling laws to biological applications , 2000 .

[43]  Michael D. Stewart,et al.  Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography , 1999 .

[44]  Jian Wang,et al.  Fabrication of a new broadband waveguide polarizer with a double-layer 190 nm period metal-gratings using nanoimprint lithography , 1999 .

[45]  George M. Whitesides,et al.  Making Negative Poisson's Ratio Microstructures by Soft Lithography** , 1999 .

[46]  Bernard Choi,et al.  Step and flash imprint lithography: a new approach to high-resolution patterning , 1999, Advanced Lithography.

[47]  G. Whitesides,et al.  Microfabrication of half-wave rectifier circuits using soft lithography , 1999 .

[48]  Zhaoning Yu,et al.  Nanoscale GaAs metal–semiconductor–metal photodetectors fabricated using nanoimprint lithography , 1999 .

[49]  G. Whitesides,et al.  Making Honeycomb Microcomposites by Soft Lithography , 1999 .

[50]  G. Whitesides,et al.  Fabrication of glassy carbon microstructures by soft lithography , 1999 .

[51]  George M. Whitesides,et al.  Three-Dimensional Metallic Microstructures Fabricated by Soft Lithography and Microelectrodeposition , 1999 .

[52]  Bipin Kumar Gupta,et al.  Nanotechnology : A data storage perspective , 1999 .

[53]  George M. Whitesides,et al.  Fabrication of Liquid‐Core Waveguides by Soft Lithography , 1999 .

[54]  C. Koch Bulk Behavior of Nanostructured Materials , 1999 .

[55]  George M. Whitesides,et al.  Fabrication of Silicon MOSFETs Using Soft Lithography , 1998 .

[56]  G. Whitesides,et al.  Generating ∼90 nanometer features using near-field contact-mode photolithography with an elastomeric phase mask , 1998 .

[57]  George M. Whitesides,et al.  Quantifying distortions in soft lithography , 1998 .

[58]  G. Whitesides,et al.  The Use of Soft Lithography to Fabricate Arrays of Schottky Diodes , 1998 .

[59]  George M. Whitesides,et al.  Soft lithography and microfabrication , 1998 .

[60]  G. Whitesides,et al.  Soft Lithography. , 1998, Angewandte Chemie.

[61]  George M. Whitesides,et al.  Using soft lithography to fabricate GaAs/AlGaAs heterostructure field effect transistors , 1997 .

[62]  J. Gibson,et al.  Reading and Writing with Electron Beams , 1997 .

[63]  Stephen Y. Chou,et al.  Nanoscale silicon field effect transistors fabricated using imprint lithography , 1997 .

[64]  George M. Whitesides,et al.  Solvent‐assisted microcontact molding: A convenient method for fabricating three‐dimensional structures on surfaces of polymers , 1997 .

[65]  George M. Whitesides,et al.  Replica molding using polymeric materials: A practical step toward nanomanufacturing , 1997 .

[66]  Heinz Schmid,et al.  Stability of molded polydimethylsiloxane microstructures , 1997 .

[67]  G. Whitesides,et al.  Fabrication of three‐dimensional micro‐structures: Microtransfer molding , 1996 .

[68]  G. Whitesides,et al.  Complex Optical Surfaces Formed by Replica Molding Against Elastomeric Masters , 1996, Science.

[69]  G. Whitesides,et al.  Micromolding of Polymers in Capillaries: Applications in Microfabrication , 1996 .

[70]  S. Chou,et al.  Imprint Lithography with 25-Nanometer Resolution , 1996, Science.

[71]  S. Chou,et al.  Nanoimprint Lithography , 2010 .

[72]  M F Crommie,et al.  Confinement of Electrons to Quantum Corrals on a Metal Surface , 1993, Science.

[73]  Roger Fabian W. Pease,et al.  Nanolithography and its prospects as a manufacturing technology , 1992 .