High-contrast Hα imaging with Subaru/SCExAO + VAMPIRES

Abstract. We present the current status of Hα high-contrast imaging observations with Subaru/Subaru Coronagraphic Extreme Adaptive Optics + VAMPIRES. Our adaptive optics correction at optical wavelengths in combination with (double) spectral differential imaging (SDI) and angular differential imaging (ADI) was capable of resolving a ring feature around omi Cet and detect the Hα counterpart of jet around RY Tau. We tested the post-processing by changing the order of ADI and SDI and both of the contrast limits achieved ∼10  −  3 to 5  ×  10  −  4 at 0.3″, which is comparable to other Hα high-contrast imaging instruments in the Southern Hemisphere such as very large telescope (VLT)/spectro-polarimetric high-contrast exoplanet research, VLT/MUSE, and Magellan AO. Current wavefront sensing and adaptive optics correction at optical wavelengths empirically depend on airmass, and Subaru/VAMPIRES provide great opportunities for Hα high-contrast imaging for Northern Hemisphere targets.

[1]  Frantz Martinache,et al.  Performance and early science with the Subaru Coronagraphic Extreme Adaptive Optics project , 2019, Optical Engineering + Applications.

[2]  Norbert Zacharias,et al.  VizieR Online Data Catalog: UCAC4 Catalogue (Zacharias+, 2012) , 2012 .

[3]  Armando Riccardi,et al.  MAGELLAN ADAPTIVE OPTICS FIRST-LIGHT OBSERVATIONS OF THE EXOPLANET β PIC b. I. DIRECT IMAGING IN THE FAR-RED OPTICAL WITH MagAO+VisAO AND IN THE NEAR-IR WITH NICI, , 2014, 1403.0560.

[4]  G. Perrin,et al.  The Subaru Coronagraphic Extreme Adaptive Optics System: Enabling High-Contrast Imaging on Solar-System Scales , 2015, 1507.00017.

[5]  A. T. Tokunaga,et al.  The Mauna Kea observatories near-infrared filter set. II. Specifications for a new JHKL ' M ' filter set for infrared astronomy , 2001 .

[6]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[7]  M. Wittkowski,et al.  Tests of stellar model atmospheres by optical interferometry III: NPOI and VINCI interferometry of , 2006, astro-ph/0610149.

[8]  Masahiro Ikoma,et al.  Accretion Properties of PDS 70b with MUSE , 2020 .

[9]  Laird M. Close,et al.  Resolving the Hα-emitting Region in the Wind of η Carinae , 2017 .

[10]  Frantz Martinache,et al.  SCExAO, an instrument with a dual purpose: perform cutting-edge science and develop new technologies , 2018, Astronomical Telescopes + Instrumentation.

[11]  M. Ikoma,et al.  Constraining Planetary Gas Accretion Rate from Hα Line Width and Intensity: Case of PDS 70 b and c , 2019, The Astrophysical Journal.

[12]  D. E. Shchegolev,et al.  The Pulkovo spectrophotometric catalog of bright stars in the range from 320 to 1080 nm. A supplement , 1997 .

[13]  D. Fantinel,et al.  SPHERE view of the jet and the envelope of RY Tauri , 2019, Astronomy & Astrophysics.

[14]  Julien H. Girard,et al.  SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.

[15]  Shane Jacobson,et al.  Adaptive optics with an infrared pyramid wavefront sensor , 2018, Astronomical Telescopes + Instrumentation.

[16]  David L. Fried,et al.  Statistics of a Geometric Representation of Wavefront Distortion: Errata , 1965 .

[17]  Laurent Pueyo,et al.  pyKLIP: PSF Subtraction for Exoplanets and Disks , 2015 .

[18]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[19]  H. Canovas,et al.  The widest Hα survey of accreting protoplanets around nearby transition disks , 2019 .

[20]  Arne A. Henden,et al.  The American Association of Variable Star Observers (AAVSO) , 2006 .

[21]  Timothy D. Brandt,et al.  Constraining Accretion Signatures of Exoplanets in the TW Hya Transitional Disk , 2017, 1707.06337.

[22]  S. Cabrit,et al.  Forbidden-line emission and infrared excesses in T Tauri stars - Evidence for accretion-driven mass loss? , 1990 .

[23]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[24]  Yang Huang,et al.  Empirical metallicity-dependent calibrations of effective temperature against colours for dwarfs and giants based on interferometric data , 2015, 1508.06080.

[25]  C. U. Keller,et al.  Two accreting protoplanets around the young star PDS 70 , 2019, Nature Astronomy.

[26]  Laird M. Close,et al.  Magellan Adaptive Optics Imaging of PDS 70: Measuring the Mass Accretion Rate of a Young Giant Planet within a Gapped Disk , 2018, The Astrophysical Journal Letters.

[27]  J. Beckers ADAPTIVE OPTICS FOR ASTRONOMY: Principles, Performance, and Applications , 1993 .

[28]  W. Smith SPECTRAL DIFFERENTIAL IMAGING DETECTION OF PLANETS ABOUT NEARBY STARS. , 1987 .

[29]  M. Loupias,et al.  The MUSE second-generation VLT instrument , 2010, Astronomical Telescopes + Instrumentation.

[30]  Wm. A. Wheaton,et al.  VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003) , 2003 .

[31]  O. Guyon,et al.  The VAMPIRES instrument: imaging the innermost regions of protoplanetary discs with polarimetric interferometry , 2014, 1405.7426.

[32]  Ruobing Dong,et al.  Spiral Arms in Disks: Planets or Gravitational Instability? , 2018, The Astrophysical Journal.

[33]  A. Moffat A Theoretical Investigation of Focal Stellar Images in the Photographic Emulsion and Application to Photographic Photometry , 1969 .

[34]  Julien H. Girard,et al.  Separating extended disc features from the protoplanet in PDS 70 using VLT/SINFONI , 2019, Monthly Notices of the Royal Astronomical Society.

[35]  Paulo J. V. Garcia,et al.  (O I) sub-arcsecond study of a microjet from an intermediate mass young star: RY Tauri , 2009 .

[36]  E. V. Ruban,et al.  The Pulkovo Spectrophotometry Catalog of Bright Stars in the Range from 320 to 1080 Nm , 1996 .

[37]  Luca Ricci,et al.  The Disk Substructures at High Angular Resolution Project (DSHARP). I. Motivation, Sample, Calibration, and Overview , 2018, The Astrophysical Journal.

[38]  CfAO,et al.  SPECKLE SUPPRESSION THROUGH DUAL IMAGING POLARIMETRY, AND A GROUND-BASED IMAGE OF THE HR 4796A CIRCUMSTELLAR DISK , 2009, 0906.3010.

[39]  Julien H. Girard,et al.  A search for accreting young companions embedded in circumstellar disks , 2018, Astronomy & Astrophysics.

[40]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.