Admissible Sets and Infinitary Logic

[1]  S. Kleene Hierarchies of number-theoretic predicates , 1955 .

[2]  W. Hanf,et al.  Incompactness in languages with infinitely long expressions , 1964 .

[3]  Michael Makkai,et al.  On a generalization of a theorem of E. W. Beth , 1964 .

[4]  Dana Scott Invariant Borel sets , 1964 .

[5]  C. C. Chang Some new results in definability , 1964 .

[6]  E. López-Escobar An interpolation theorem for denumerably long formulas , 1965 .

[7]  A. Levy,et al.  A hierarchy of formulas in set theory , 1965 .

[8]  David W. Kueker,et al.  Definability, automorphisms, and infinitary languages , 1968 .

[9]  K. Jon Barwise,et al.  Infinitary logic and admissible sets , 1969, Journal of Symbolic Logic.

[10]  Yiannis N. Moschovakis,et al.  The Suslin-Kleene theorem for countable structures , 1970 .

[11]  H. Keisler Logic with the quantifier “there exist uncountably many” , 1970 .

[12]  Richard Mansfield,et al.  Perfect subsets of definable sets of real numbers. , 1970 .

[13]  Gonzalo E. Reyes,et al.  Local definability theory , 1970 .

[14]  Jerome I. Malitz Infinitary Analogs of Theorems from First Order Model Theory , 1971, J. Symb. Log..

[15]  Michael Makkai,et al.  Vaught sentences and Lindström's regular relations , 1973 .

[16]  John Gregory,et al.  Uncountable models and infinitary elementary extensions , 1973, Journal of Symbolic Logic.

[17]  Harvey M. Friedman,et al.  Countable models of set theories , 1973 .

[18]  M. Makkai Global definability theory in $L_{\omega _1 \omega }$ , 1973 .

[19]  R. Vaught Invariant sets in topology and logic , 1974 .

[20]  Victor Harnik,et al.  Applications of Vaught Sentences and the Covering Theorem , 1976, J. Symb. Log..

[21]  J. Ressayre Models with compactness properties relative to an admissible language , 1977 .

[22]  John S. Schlipf,et al.  A guide to the identification of admissible sets above structures , 1977 .