Modeling the increase in aerodynamic efficiency for a thick (37.5% chord) airfoil with slot suction in vortex cells with allowance for the compressibility effect

The Reynolds equations closed using the Menter shear-stress-transfer model modified with allowance for the curvature of flow lines have been numerically solved using multiblock computational technologies. The obtained solution has been used to analyze subsonic flow past a thick (37.5% chord) airfoil with slot suction in circular vortex cells intended for the Ecology and Progress (Ekologiya i Progress, EKIP) aircraft project in comparison to a distributed (from the central body surface) suction at fixed values of the total volume flow rate (0.02121) and Reynolds number (105) in a range of Mach numbers from 0 to 0.4. This analysis revealed a significant (up to tenfold) decrease in the bow drag (determined with allowance for the energy losses) and a large (by an order of magnitude) increase in the aerodynamic efficiency of the thick airfoil containing vortex cells with slot suction, which reached up to 160.