Analysis of the “Hiring Above the Median” Selection Strategy for the Hiring Problem

[1]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2007, Explorations in Numerical Analysis.

[2]  Mark Daniel Ward,et al.  ANALYTIC METHODS FOR SELECT SETS , 2012, Probability in the Engineering and Informational Sciences.

[3]  Ahmed Helmi,et al.  Hiring above the m-th Best Candidate: A Generalization of Records in Permutations , 2012, LATIN.

[4]  Ahmed Helmi,et al.  Analysis of "Hiring Above the Median": A "Lake Wobegon" Strategy for The Hiring Problem , 2012, ANALCO.

[5]  Moshe Pollak,et al.  Extreme(ly) Mean(ingful): Sequential Formation of a Quality Group , 2010, 1011.3320.

[6]  Morteza Zadimoghaddam,et al.  Submodular secretary problem and extensions , 2010, TALG.

[7]  P. Flajolet,et al.  Analytic Combinatorics , 2009 .

[8]  Moshe Pollak,et al.  Beat the mean: sequential selection by better than average rules , 2008 .

[9]  Sergei Vassilvitskii,et al.  The hiring problem and Lake Wobegon strategies , 2008, SODA '08.

[10]  M. L. Nikolaev,et al.  A multiple optimal stopping rule for sums of independent random variables , 2007 .

[11]  Nicole Immorlica,et al.  A Knapsack Secretary Problem with Applications , 2007, APPROX-RANDOM.

[12]  Hsien-Kuei Hwang,et al.  Analysis of some exactly solvable diminishing urn models , 2007, 2212.05091.

[13]  E. Samuel-Cahn,et al.  Select sets: Rank and file , 2007, math/0703032.

[14]  Robert D. Kleinberg A multiple-choice secretary algorithm with applications to online auctions , 2005, SODA '05.

[15]  Holger Kösters,et al.  A note on multiple stopping rules , 2004 .

[16]  J. Preater,et al.  Sequential selection with a better-than-average rule , 2000 .

[17]  Michael Taylor,et al.  Partial Differential Equations I: Basic Theory , 1996 .

[18]  Nimrod Megiddo,et al.  Improved algorithms and analysis for secretary problems and generalizations , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[19]  J. Preater,et al.  On Multiple Choice Secretary Problems , 1994, Math. Oper. Res..

[20]  J. Preater,et al.  A Multiple Stopping Problem , 1994, Probability in the Engineering and Informational Sciences.

[21]  Vijayan N. Nair,et al.  Optimal Sequential selection of n random variables under a constraint , 1984, Journal of Applied Probability.

[22]  P. Freeman The Secretary Problem and its Extensions: A Review , 1983 .

[23]  F. Mosteller,et al.  Recognizing the Maximum of a Sequence , 1966 .

[24]  Conrado Martínez,et al.  The Hiring Problem and Permutations , 2009 .

[25]  М Л Николаев,et al.  Многократные оптимальные правила остановки для суммы независимых случайных величин@@@A multiple optimal stopping rule for sums of independent random variables , 2007 .

[26]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[27]  Kenneth S. Glasser,et al.  The d-Choice Secretary Problem. , 1983 .

[28]  E. Platen,et al.  About secretary problems , 1980 .

[29]  Jorge Nuno Silva,et al.  Mathematical Games , 1959, Nature.