A Novel Denoising Algorithm of Electromagnetic Ultrasonic Detection Signal Based on Improved EEMD Method

In this paper, we propose a new denoising algorithm for electromagnetic ultrasonic signals based on the improved EEMD method, which can adaptively adjust for added noise and average times in different noisy environments, so that the effect of the residual difference of white noise on the results can be eliminated as far as possible. First, the way to add white noise in the EEMD method is processed, and then the permutation entropy algorithm is used to identify the nature of the components obtained during the decomposition. Then the wavelet transform modulus maximum denoising method is used to deal with the IMF components of the high-frequency part obtained before. Finally, the processed IMF results and residual difference are summed up. The results show that after processing, the noise component in the signal is less and the original information is more reserved, which prevents the signal distortion to a great extent and provides more effective data for subsequent processing. In the experiment, the crack defect data collected by the electromagnetic ultrasonic experiment system were processed by the improved EEMD method. Compared with the traditional EEMD method, it can retain the information of crack location more accurately, which proves the effectiveness of the proposed method.