Parameter Optimization of Photovoltaic Solar Cell and Panel Using Genetic Algorithms Strategy

In this chapter, we propose to perform a numerical technique based on genetic algorithms (GAs) to identify the electrical parameters (Is, Iph, Rs, Rsh, and n) of photovoltaic (PV) solar cells and modules. The one diode type approach is used to model the I–V characteristic of the solar cell. To extract electrical parameters, the approach is formulated as optimization problem. The GAs approach was used as a numerical technique in order to overcome problems involved in the local minima in the case optimization criteria. Compared to other methods, we find that the GAs is a very efficient technique to estimate the electrical parameters of photovoltaic solar cells and modules. Compared with other parameter extraction techniques, based on statistical study, results indicate the consistency and uniformity of method in terms of the quality of final solutions. In parallel, the simulated data with the extracted parameters of method base with GAs are in very good agreement with the experimental data in all cases. Parameter Optimization of Photovoltaic Solar Cell and Panel Using Genetic Algorithms Strategy

[1]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[2]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[3]  Yue Hao,et al.  A simple and efficient solar cell parameter extraction method from a single current-voltage curve , 2011 .

[4]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[5]  Prabhat Hajela,et al.  Cellular genetic algorithm technique for the multicriterion design optimization , 2010 .

[6]  Riccardo Poli,et al.  Genetic Programming: An Introduction and Tutorial, with a Survey of Techniques and Applications , 2008, Computational Intelligence: A Compendium.

[7]  Amir Hossein Gandomi,et al.  Multi-stage genetic programming: A new strategy to nonlinear system modeling , 2011, Inf. Sci..

[8]  Joshua M. Pearce Photovoltaics - A Path to Sustainable Futures , 2002 .

[9]  Arvind Tiwari,et al.  Modeling and parameter optimization of hybrid single channel photovoltaic thermal module using genetic algorithms , 2015 .

[10]  P. Mialhe,et al.  A practical method of analysis of the current-voltage characteristics of solar cells , 1981 .

[11]  Mustafa Türker,et al.  On-line evolutionary optimization of an industrial fed-batch yeast fermentation process. , 2009, ISA transactions.

[12]  S. Siva Sathya,et al.  Evolutionary algorithms for de novo drug design - A survey , 2015, Appl. Soft Comput..

[13]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[14]  Ali Naci Celik,et al.  Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models , 2007 .

[15]  M. Guziewicz,et al.  Schottky diode parameters extraction using Lambert W function , 2009 .

[16]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .

[17]  F. Ghani,et al.  Numerical calculation of series and shunt resistance of a photovoltaic cell using the Lambert W-function: Experimental evaluation , 2013 .

[18]  Vaclav Kozeny Genetic algorithms for credit scoring: Alternative fitness function performance comparison , 2015, Expert Syst. Appl..

[19]  Masao Fukushima,et al.  Derivative-Free Filter Simulated Annealing Method for Constrained Continuous Global Optimization , 2006, J. Glob. Optim..

[20]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[21]  Shu-xian Lun,et al.  An explicit approximate I–V characteristic model of a solar cell based on padé approximants , 2013 .

[22]  Mario Vanhoucke,et al.  A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem , 2010, Eur. J. Oper. Res..

[23]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[24]  David Infield,et al.  The influence of the measurement environment on the accuracy of the extraction of the physical parameters of solar cells , 1999 .

[25]  Jean-Pierre Charles,et al.  A critical study of the effectiveness of the single and double exponential models for I–V characterization of solar cells , 1985 .

[26]  Gonzalo Pajares,et al.  Parameter identification of solar cells using artificial bee colony optimization , 2014 .

[27]  A. Gandomi Interior search algorithm (ISA): a novel approach for global optimization. , 2014, ISA transactions.

[28]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[29]  I. Youm,et al.  Modélisation d'une cellule photovoltaïque I: Détermination des paramètres à partir de la caractéristique courant-tension sous éclairement , 1985 .

[30]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[31]  M. F. AlHajri,et al.  A new estimation approach for determining the I–V characteristics of solar cells , 2011 .

[32]  Timothy U. Townsend,et al.  A Method for Estimating the Long-Term Performance of Direct-Coupled Photovoltaic Systems , 1989 .

[33]  Donatien Njomo,et al.  Modelling and Simulation of photovoltaic module considering single-diode equivalent circuit model in MATLAB , 2013 .