A gate-width scalable 90-nm MOSFET nonlinear model including DC/RF dispersion effects valid up to 50 GHz

Abstract An improved deep sub-micrometer (90 nm) large signal model for silicon-based MOSFET that incorporates DC/AC dispersion model is proposed. The derived DC model can accurately predict the device current-voltage behavior over the wide range of bias points and the corresponding extraction method for model parameters is investigated. The improvement also consists of new equations for the nonlinear capacitance phenomenon in the saturation region using few fitting parameters, and emphasizes for the particularly difficult problems associated with the DC/RF dispersion. Model verification is carried out by comparison of measured and simulated S -parameters for 90 nm gate-length MOSFET devices point up to 50 GHz. Good agreement is obtained between measured and modeled results and the scalability of model is also verified in this paper.

[1]  Trond Ytterdal,et al.  Enhanced heterostructure field effect transistor CAD model suitable for simulation of mixed mode circuits , 1999 .

[2]  F. Danneville,et al.  What are the limiting parameters of deep-submicron MOSFETs for high frequency applications? , 2003, IEEE Electron Device Letters.

[3]  S. H. Jen,et al.  Accurate modeling and parameter extraction for MOS transistors valid up to 10 GHz , 1999 .

[4]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[5]  D. Jimenez,et al.  Explicit Analytical Charge and Capacitance Models of Undoped Double-Gate MOSFETs , 2007, IEEE Transactions on Electron Devices.

[6]  C. Camacho-Peñalosa,et al.  Modelling frequency dependence of output impedance of a microwave MESFET at low frequencies , 1985 .

[7]  Chenming Hu,et al.  RF Modeling of FDSOI Transistors Using Industry Standard BSIM-IMG Model , 2016, IEEE Transactions on Microwave Theory and Techniques.

[8]  Yuhua Cheng,et al.  MOSFET Modeling and Bsim3 User's Guide , 1999 .

[9]  Yi-Jen Chan,et al.  Characteristics of deep-submicrometer MOSFET and its empirical nonlinear RF model , 1998 .

[10]  A. Werthof,et al.  Direct parameter extraction method for deep submicrometer metal oxide semiconductor field effect transistor small signal equivalent circuit , 2009 .

[11]  R. Torres-Torres,et al.  A method to determine the gate bias-dependent and gate bias-independent components of MOSFET series resistance from S-parameters , 2006, IEEE Transactions on Electron Devices.

[12]  Chien-Ping Lee,et al.  Numerical analysis of frequency dispersion of transconductance in GaAs MESFETs , 1996 .

[13]  N. Camilleri,et al.  Extracting small-signal model parameters of silicon MOSFET transistors , 1994, 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No.94CH3389-4).

[14]  Dominique Schreurs,et al.  Development of a RF large signal MOSFET model, based on an equivalent circuit, and comparison with the BSIM3v3 compact model , 2002 .

[15]  Seonghearn Lee,et al.  Determining non-quasi-static small-signal equivalent circuit of a RF silicon MOSFET , 2001 .

[16]  A. J. McCamant,et al.  An improved GaAs MESFET model for SPICE , 1990 .

[17]  V. Kilchytska,et al.  Wide frequency band assessment of 28 nm FDSOI technology platform for analogue and RF applications , 2014, 2014 15th International Conference on Ultimate Integration on Silicon (ULIS).

[18]  Fujiang Lin,et al.  An efficient CAD-oriented large-signal MOSFET model , 2000 .

[19]  O. Faynot,et al.  A simple parameter extraction method for ultra-thin oxide MOSFETs , 1995 .

[20]  R.A. Pucel,et al.  GaAs FET device and circuit simulation in SPICE , 1987, IEEE Transactions on Electron Devices.

[21]  Seok-Lyong Lee Accurate RF extraction method for resistances and inductances of sub-0.1 /spl mu/m CMOS transistors , 2005 .

[22]  Arthur David Snider Charge conservation and the transcapacitance element: an exposition , 1995 .

[23]  W. Curtice A MESFET Model for Use in the Design of GaAs Integrated Circuits , 1980 .

[24]  I. M. Stephenson,et al.  Experimental Measurement of Microstrip Transistor-Package Parasitic Reactances , 1977 .

[25]  L. E. Larson,et al.  An improved GaAs MESFET equivalent circuit model for analog integrated circuit applications , 1987 .

[26]  G. Crupi,et al.  Technology-Independent Non-Quasi-Static Table-Based Nonlinear Model Generation , 2009, IEEE Transactions on Microwave Theory and Techniques.

[27]  O. Faynot,et al.  Extraction of Isothermal Condition and Thermal Network in UTBB SOI MOSFETs , 2012, IEEE Electron Device Letters.

[28]  A. Werthof,et al.  Scalable Small-Signal and Noise Modeling for Deep-Submicrometer MOSFETs , 2009, IEEE Transactions on Microwave Theory and Techniques.

[29]  H. Zirath,et al.  An empirical-table based FET model , 1999, 1999 IEEE MTT-S International Microwave Symposium Digest (Cat. No.99CH36282).

[30]  K. Suyama,et al.  MOSFET modeling for analog circuit CAD: Problems and prospects , 1993, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '93.

[31]  S.S. Islam,et al.  A physics-based frequency dispersion model of GaN MESFETs , 2004, IEEE Transactions on Electron Devices.

[32]  L. Forbes,et al.  A self-backgating GaAs MESFET model for low-frequency anomalies , 1990 .

[33]  H. Masuda,et al.  An improved GaAs device model for the simulation of analog integrated circuit , 2003 .

[34]  Vincent Fusco,et al.  Large-signal modeling of frequency-dispersion effects in submicron MOSFET devices , 2002 .

[35]  C. Wei,et al.  An accurate large-signal model of GaAs MESFET which accounts for charge conservation, dispersion, and self-heating , 1998 .

[36]  I. Wolff,et al.  A new spline based FET model for MESFETs and HEMTs , 1997, 1997 27th European Microwave Conference.

[37]  G. Maracas,et al.  Frequency-dependent electrical characteristics of GaAs MESFETs , 1990 .

[38]  Li Zhang,et al.  Accurate small signal modeling and extraction of silicon MOSFET for RF IC application , 2010 .

[39]  H. Zirath,et al.  A new empirical nonlinear model for HEMT and MESFET devices , 1992 .

[40]  Kiat Seng Yeo,et al.  Simple and accurate extraction methodology for RF MOSFET valid up to 20 GHz , 2004 .

[41]  Yoon-Ha Jeong,et al.  On the RF Series Resistance Extraction of Nanoscale MOSFETs , 2008, IEEE Microwave and Wireless Components Letters.