Core crystallization and pile-up in the cooling sequence of evolving white dwarfs
暂无分享,去创建一个
M. Hollands | N. G. Fusillo | T. Marsh | B. Gänsicke | J. Hermes | G. Fontaine | T. Cunningham | B. Dunlap | P. Tremblay | E. Cukanovaite
[1] M. Hollands,et al. AGaiaData Release 2 catalogue of white dwarfs and a comparison with SDSS , 2018, Monthly Notices of the Royal Astronomical Society.
[2] H. Rix,et al. An Empirical Measurement of the Initial–Final Mass Relation with Gaia White Dwarfs , 2018, The Astrophysical Journal.
[3] T. A. Lister,et al. Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.
[4] P. J. Richards,et al. Gaia Data Release 2 , 2018, Astronomy & Astrophysics.
[5] H. Richer,et al. The onset of convective coupling and freezing in the white dwarfs of 47 Tucanae , 2017, 1709.08097.
[6] G. Fontaine,et al. Measurements of Physical Parameters of White Dwarfs: A Test of the Mass–Radius Relation , 2017, 1709.02324.
[7] O. Steiner,et al. ON THE EVOLUTION OF MAGNETIC WHITE DWARFS , 2015, 1509.05398.
[8] D. Soderblom,et al. WHITE DWARF COSMOCHRONOLOGY IN THE SOLAR NEIGHBORHOOD , 2014, 1406.5173.
[9] H. Ludwig,et al. Spectroscopic analysis of DA white dwarfs with 3D model atmospheres , 2013, 1309.0886.
[10] I. Reid,et al. ULTRA-DEEP HUBBLE SPACE TELESCOPE IMAGING OF THE SMALL MAGELLANIC CLOUD: THE INITIAL MASS FUNCTION OF STARS WITH M ≲ 1 M☉ , 2012, 1212.1159.
[11] C. Horowitz,et al. Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[12] L. Althaus,et al. New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution , 2011, 1110.5665.
[13] C. Horowitz,et al. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[14] C. Horowitz,et al. Crystallization of carbon-oxygen mixtures in white dwarf stars. , 2010, Physical review letters.
[15] A. Córsico,et al. A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes , 2010, Nature.
[16] L. Girardi,et al. Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 solar masses , 2009, 0911.2419.
[17] S. O. Kepler,et al. SDSS DR7 WHITE DWARF CATALOG , 2007, 1212.1222.
[18] R. Rich,et al. The Dearth of Massive, Helium-rich White Dwarfs in Young Open Star Clusters , 2004, astro-ph/0409172.
[19] B. Gibson,et al. The White Dwarf Cooling Sequence of the Globular Cluster Messier 4 , 2002, astro-ph/0205087.
[20] Pierre Brassard,et al. The Potential of White Dwarf Cosmochronology , 2001 .
[21] P. Marigo. Chemical Yields from Low- and Intermediate-Mass Stars , 1999, astro-ph/0012181.
[22] G. Chabrier,et al. Equation of state of fully ionized electron-ion plasmas. II. Extension To relativistic densities and to the solid phase , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[23] M. Hernanz,et al. Cooling Theory of Crystallized White Dwarfs , 1994 .
[24] James Liebert,et al. A spectroscopic determination of the mass distribution of DA white dwarfs , 1992 .
[25] G. Fontaine,et al. Evolutionary models for pulsation studies of white dwarfs , 1990 .
[26] M. Hernanz,et al. Theoretical white-dwarf luminosity functions for two phase diagrams of the carbon-oxygen dense plasma. , 1988 .
[27] S. O. Kepler,et al. An independent method for determining the age of the universe , 1987 .
[28] M. Ruderman,et al. The Energy Content of A White Dwarf and Its Rate of Cooling , 1967 .
[29] L. Mestel. On the Theory of White Dwarf Stars: I. The Energy Sources of White Dwarfs , 1952 .
[30] E. A. Milne,et al. The Highly Collapsed Configurations of a Stellar Mass , 1931 .
[31] H. Horn. CRYSTALLIZATION OF WHITE DWARFS. , 1968 .
[32] S. Chandrasekhar. The highly collapsed configurations of a stellar mass (Second paper) , 1935 .