Core crystallization and pile-up in the cooling sequence of evolving white dwarfs

[1]  M. Hollands,et al.  AGaiaData Release 2 catalogue of white dwarfs and a comparison with SDSS , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  H. Rix,et al.  An Empirical Measurement of the Initial–Final Mass Relation with Gaia White Dwarfs , 2018, The Astrophysical Journal.

[3]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[4]  P. J. Richards,et al.  Gaia Data Release 2 , 2018, Astronomy & Astrophysics.

[5]  H. Richer,et al.  The onset of convective coupling and freezing in the white dwarfs of 47 Tucanae , 2017, 1709.08097.

[6]  G. Fontaine,et al.  Measurements of Physical Parameters of White Dwarfs: A Test of the Mass–Radius Relation , 2017, 1709.02324.

[7]  O. Steiner,et al.  ON THE EVOLUTION OF MAGNETIC WHITE DWARFS , 2015, 1509.05398.

[8]  D. Soderblom,et al.  WHITE DWARF COSMOCHRONOLOGY IN THE SOLAR NEIGHBORHOOD , 2014, 1406.5173.

[9]  H. Ludwig,et al.  Spectroscopic analysis of DA white dwarfs with 3D model atmospheres , 2013, 1309.0886.

[10]  I. Reid,et al.  ULTRA-DEEP HUBBLE SPACE TELESCOPE IMAGING OF THE SMALL MAGELLANIC CLOUD: THE INITIAL MASS FUNCTION OF STARS WITH M ≲ 1 M☉ , 2012, 1212.1159.

[11]  C. Horowitz,et al.  Direct molecular dynamics simulation of liquid-solid phase equilibria for a three-component plasma. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  L. Althaus,et al.  New phase diagrams for dense carbon-oxygen mixtures and white dwarf evolution , 2011, 1110.5665.

[13]  C. Horowitz,et al.  Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  C. Horowitz,et al.  Crystallization of carbon-oxygen mixtures in white dwarf stars. , 2010, Physical review letters.

[15]  A. Córsico,et al.  A white dwarf cooling age of 8 Gyr for NGC 6791 from physical separation processes , 2010, Nature.

[16]  L. Girardi,et al.  Scaled solar tracks and isochrones in a large region of the Z-Y plane. II. From 2.5 to 20 solar masses , 2009, 0911.2419.

[17]  S. O. Kepler,et al.  SDSS DR7 WHITE DWARF CATALOG , 2007, 1212.1222.

[18]  R. Rich,et al.  The Dearth of Massive, Helium-rich White Dwarfs in Young Open Star Clusters , 2004, astro-ph/0409172.

[19]  B. Gibson,et al.  The White Dwarf Cooling Sequence of the Globular Cluster Messier 4 , 2002, astro-ph/0205087.

[20]  Pierre Brassard,et al.  The Potential of White Dwarf Cosmochronology , 2001 .

[21]  P. Marigo Chemical Yields from Low- and Intermediate-Mass Stars , 1999, astro-ph/0012181.

[22]  G. Chabrier,et al.  Equation of state of fully ionized electron-ion plasmas. II. Extension To relativistic densities and to the solid phase , 1998, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  M. Hernanz,et al.  Cooling Theory of Crystallized White Dwarfs , 1994 .

[24]  James Liebert,et al.  A spectroscopic determination of the mass distribution of DA white dwarfs , 1992 .

[25]  G. Fontaine,et al.  Evolutionary models for pulsation studies of white dwarfs , 1990 .

[26]  M. Hernanz,et al.  Theoretical white-dwarf luminosity functions for two phase diagrams of the carbon-oxygen dense plasma. , 1988 .

[27]  S. O. Kepler,et al.  An independent method for determining the age of the universe , 1987 .

[28]  M. Ruderman,et al.  The Energy Content of A White Dwarf and Its Rate of Cooling , 1967 .

[29]  L. Mestel On the Theory of White Dwarf Stars: I. The Energy Sources of White Dwarfs , 1952 .

[30]  E. A. Milne,et al.  The Highly Collapsed Configurations of a Stellar Mass , 1931 .

[31]  H. Horn CRYSTALLIZATION OF WHITE DWARFS. , 1968 .

[32]  S. Chandrasekhar The highly collapsed configurations of a stellar mass (Second paper) , 1935 .