Autolysins of Bacillus subtilis: multiple enzymes with multiple functions.

Autolysins are bacteriolytic enzymes that digest the cellwall peptidoglycan of the bacteria that produce them (Shockman&Ho$ ltje, 1994). Although potentially lethal, autolysins appear to be universal among bacteria that possess peptidoglycan. Peptidoglycan, the substrate of autolysins, is a polymer of amino sugars cross-linked by short peptides which forms a covalent matrix that surrounds the cytoplasmic membrane and constitutes the major skeletal component of the cell wall. It is critical in determining cell shape and preventing osmotic lysis under hypotonic conditions. Cell-wall peptidoglycan, whilst very strong, is also highly dynamic: the structure expands as the cell grows and is reshaped when it divides or differentiates. The possibility that autolysins are involved in selective removal of peptidoglycan has led to proposals that they are involved in numerous cellular processes including cell growth, cell-wall turnover, peptidoglycan maturation, cell division, separation, motility, chemotaxis, genetic competence, protein secretion, differentiation and pathogenicity (Foster, 1994; Blackman et al., 1998).

[1]  Yasuo Kobayashi,et al.  Characterization of a New Sigma-K-Dependent Peptidoglycan Hydrolase Gene That Plays a Role in Bacillus subtilis Mother Cell Lysis , 1999, Journal of bacteriology.

[2]  S. Foster,et al.  Analysis of Peptidoglycan Structure from Vegetative Cells of Bacillus subtilis 168 and Role of PBP 5 in Peptidoglycan Maturation , 1999, Journal of bacteriology.

[3]  S. Ishikawa,et al.  Peptidoglycan Hydrolase LytF Plays a Role in Cell Separation with CwlF during Vegetative Growth of Bacillus subtilis , 1999, Journal of bacteriology.

[4]  P. Setlow,et al.  Roles of Low-Molecular-Weight Penicillin-Binding Proteins in Bacillus subtilis Spore Peptidoglycan Synthesis and Spore Properties , 1999, Journal of bacteriology.

[5]  S. Foster,et al.  Peptidoglycan Structural Dynamics during Germination of Bacillus subtilis 168 Endospores , 1998, Journal of bacteriology.

[6]  O. Schneewind,et al.  Targeting of muralytic enzymes to the cell division site of Gram‐positive bacteria: repeat domains direct autolysin to the equatorial surface ring of Staphylococcus aureus , 1998, The EMBO journal.

[7]  S. Ishikawa,et al.  Regulation of a New Cell Wall Hydrolase Gene,cwlF, Which Affects Cell Separation in Bacillus subtilis , 1998, Journal of bacteriology.

[8]  Simon J. Foster,et al.  Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. , 1998, Microbiology.

[9]  D. Karamata,et al.  The N-acetylmuramoyl-L-alanine amidase encoded by the Bacillus subtilis 168 prophage SP beta. , 1998, Microbiology.

[10]  S. Ishikawa,et al.  Regulation and Characterization of a Newly Deduced Cell Wall Hydrolase Gene (cwlJ) Which Affects Germination of Bacillus subtilis Spores , 1998, Journal of bacteriology.

[11]  D. Karamata,et al.  The lytE Gene of Bacillus subtilis 168 Encodes a Cell Wall Hydrolase , 1998 .

[12]  S. Foster,et al.  Autolysins during sporulation of Bacillus subtilis 168 , 1997 .

[13]  A. Goffeau,et al.  The complete genome sequence of the Gram-positive bacterium Bacillus subtilis , 1997, Nature.

[14]  W. Fischer,et al.  The absence of D-alanine from lipoteichoic acid and wall teichoic acid alters surface charge, enhances autolysis and increases susceptibility to methicillin in Bacillus subtilis. , 1997, Microbiology.

[15]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[16]  R. López,et al.  The lytic enzyme of the pneumococcal phage Dp‐1: a chimeric lysin of intergeneric origin , 1997, Molecular microbiology.

[17]  P. Cossart,et al.  InlB: an invasion protein of Listeria monocytogenes with a novel type of surface association , 1997, Molecular microbiology.

[18]  R. Moriyama,et al.  Molecular characterization of a germination-specific muramidase from Clostridium perfringens S40 spores and nucleotide sequence of the corresponding gene , 1997, Journal of bacteriology.

[19]  P. Stragier,et al.  spoIIQ, a forespore‐expressed gene required for engulfment in Bacillus subtilis , 1997, Molecular microbiology.

[20]  P. Setlow,et al.  Muramic lactam in peptidoglycan of Bacillus subtilis spores is required for spore outgrowth but not for spore dehydration or heat resistance. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[21]  P. Setlow,et al.  Analysis of the peptidoglycan structure of Bacillus subtilis endospores , 1996, Journal of bacteriology.

[22]  J. Sekiguchi,et al.  flaD (sinR) mutations affect SigD-dependent functions at multiple points in Bacillus subtilis , 1996, Journal of bacteriology.

[23]  S. Foster,et al.  Structural analysis of Bacillus subtilis 168 endospore peptidoglycan and its role during differentiation , 1996, Journal of bacteriology.

[24]  E. Brunskill,et al.  Identification of LytSR-regulated genes from Staphylococcus aureus , 1996, Journal of bacteriology.

[25]  R. Moriyama,et al.  A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to L-alanine-mediated germination , 1996, Journal of bacteriology.

[26]  W Keck,et al.  Peptidoglycan as a barrier to transenvelope transport , 1996, Journal of bacteriology.

[27]  O. Schneewind,et al.  Target cell specificity of a bacteriocin molecule: a C‐terminal signal directs lysostaphin to the cell wall of Staphylococcus aureus. , 1996, The EMBO journal.

[28]  D. Karamata,et al.  A periplasm in Bacillus subtilis , 1995, Journal of bacteriology.

[29]  J. Sekiguchi,et al.  Glucosaminidase of Bacillus subtilis: cloning, regulation, primary structure and biochemical characterization. , 1995, Microbiology.

[30]  J. Sekiguchi,et al.  Nucleotide sequence and regulation of a new putative cell wall hydrolase gene, cwlD, which affects germination in Bacillus subtilis. , 1995, Journal of bacteriology.

[31]  D. Karamata,et al.  In Bacillus subtilis 168, teichoic acid of the cross-wall may be different from that of the cylinder: a hypothesis based on transcription analysis of tag genes. , 1995, Microbiology.

[32]  J. Sekiguchi,et al.  Analysis of the minor autolysins of Bacillus subtilis during vegetative growth by zymography , 1995 .

[33]  S. Foster,et al.  Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4 , 1995, Journal of bacteriology.

[34]  A. L. Koch Bacterial Growth and Form , 1995, Springer Netherlands.

[35]  S. Foster,et al.  Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168 , 1995, Journal of bacteriology.

[36]  M. Loessner,et al.  Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes , 1995, Molecular microbiology.

[37]  Y. Miyake,et al.  Identification of endo-beta-N-acetylglucosaminidase and N-acetylmuramyl-L-alanine amidase as cluster-dispersing enzymes in Staphylococcus aureus , 1995, Journal of bacteriology.

[38]  T. Sato,et al.  Complete nucleotide sequence of a skin element excised by DNA rearrangement during sporulation in Bacillus subtilis. , 1995, Microbiology.

[39]  A. Tomasz,et al.  A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Pascal F. Longchamp,et al.  Lytic enzymes associated with defective prophages of Bacillus subtilis: sequencing and characterization of the region comprising the N-acetylmuramoyl-L-alanine amidase gene of prophage PBSX. , 1994, Microbiology.

[41]  T. Inoue,et al.  A spore-lytic enzyme released from Bacillus cereus spores during germination. , 1994, Microbiology.

[42]  S. Foster,et al.  The role and regulation of cell wall structural dynamics during differentiation of endospore-forming bacteria. , 1994, Society for Applied Bacteriology symposium series.

[43]  D. Karamata,et al.  The gene of the N‐acetylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis , 1994, Molecular microbiology.

[44]  J. Ghuysen,et al.  Binding site‐shaped repeated sequences of bacterial wall peptidoglycan hydrolases , 1994, FEBS letters.

[45]  T. Beveridge,et al.  Structural differentiation of the Bacillus subtilis 168 cell wall , 1994, Journal of bacteriology.

[46]  K. H. Kalk,et al.  Doughnut-shaped structure of a bacterial muramidase revealed by X-ray crystallography , 1994, Nature.

[47]  S. Foster Analysis of Bacillus subtilis 168 prophage-associated lytic enzymes; identification and characterization of CWLA-related prophage proteins. , 1993, Journal of General Microbiology.

[48]  K. Kuchler Unusual routes of protein secretion: the easy way out. , 1993, Trends in cell biology.

[49]  J. Sekiguchi,et al.  Molecular cloning of a sporulation-specific cell wall hydrolase gene of Bacillus subtilis , 1993, Journal of bacteriology.

[50]  A. L. Koch,et al.  Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis , 1993, Journal of bacteriology.

[51]  A. Clarke,et al.  Extent of peptidoglycan O acetylation in the tribe Proteeae , 1993, Journal of bacteriology.

[52]  W. Goebel,et al.  The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity , 1993, Journal of bacteriology.

[53]  J. Ghuysen,et al.  Characterization of the sporulation-related gamma-D-glutamyl-(L)meso-diaminopimelic-acid-hydrolysing peptidase I of Bacillus sphaericus NCTC 9602 as a member of the metallo(zinc) carboxypeptidase A family. Modular design of the protein. , 1993, The Biochemical journal.

[54]  J. Errington,et al.  Bacillus subtilis sporulation: regulation of gene expression and control of morphogenesis. , 1993, Microbiological reviews.

[55]  J. Sekiguchi,et al.  High-level transcription of the major Bacillus subtilis autolysin operon depends on expression of the sigma D gene and is affected by a sin (flaD) mutation , 1993, Journal of bacteriology.

[56]  D. Karamata,et al.  Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. , 1992, Journal of general microbiology.

[57]  J. Sekiguchi,et al.  Molecular cloning and sequencing of the upstream region of the major Bacillus subtilis autolysin gene: a modifier protein exhibiting sequence homology to the major autolysin and the spoIID product. , 1992, Journal of general microbiology.

[58]  J. Ghuysen,et al.  Modular design of the Enterococcus hirae muramidase-2 and Streptococcus faecalis autolysin. , 1992, FEMS microbiology letters.

[59]  J. Ghuysen,et al.  Modular design of theEnterococcus hiraemuramidase-2 andStreptococcus faecalisautolysin , 1992 .

[60]  J. Ghuysen,et al.  Cloning and nucleotide sequence of the gene encoding the gamma-D-glutamyl-L-diamino acid endopeptidase II of Bacillus sphaericus. , 1992, FEMS microbiology letters.

[61]  R. Losick,et al.  Crisscross regulation of cell-type-specific gene expression during development in B. subtilis , 1992, Nature.

[62]  S. Foster,et al.  Analysis of the autolysins of Bacillus subtilis 168 during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis , 1992, Journal of bacteriology.

[63]  J. Sekiguchi,et al.  Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene , 1991, Journal of bacteriology.

[64]  S. Foster,et al.  Cloning, expression, sequence analysis and biochemical characterization of an autolytic amidase of Bacillus subtilis 168 trpC2. , 1991, Journal of general microbiology.

[65]  N. Illing,et al.  Genetic regulation of morphogenesis in Bacillus subtilis: roles of sigma E and sigma F in prespore engulfment , 1991, Journal of bacteriology.

[66]  J. Sekiguchi,et al.  Cloning, sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene. , 1990, Journal of general microbiology.

[67]  S. Foster,et al.  Pulling the trigger: the mechanism of bacterial spore germination , 1990, Molecular microbiology.

[68]  C. Harwood,et al.  Cell wall assembly in Bacillus subtilis: partial conservation of polar wall material and the effect of growth conditions on the pattern of incorporation of new material at the polar caps. , 1989, Journal of general microbiology.

[69]  C. Harwood,et al.  Cell Wall Assembly in Bacillus subtilis: Visualization of Old and New Wall Material by Electron Microscopic Examination of Samples Stained Selectively for Teichoic Acid and Teichuronic Acid , 1989 .

[70]  M. Chamberlin,et al.  Cloning, sequencing, and disruption of the Bacillus subtilis sigma 28 gene , 1988, Journal of bacteriology.

[71]  R. Novick,et al.  Cloning, sequence, and expression of the lysostaphin gene from Staphylococcus simulans. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[72]  H. Cheung,et al.  Monovalent cations enable cell wall turnover of the turnover-deficient lyt-15 mutant of Bacillus subtilis , 1985, Journal of bacteriology.

[73]  D. Karamata,et al.  Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis , 1984, Journal of bacteriology.

[74]  J. Ward,et al.  Purification and properties of autolytic endo-beta-N-acetylglucosaminidase and the N-acetylmuramyl-L-alanine amidase from Bacillus subtilis strain 168. , 1984, Journal of general microbiology.

[75]  L. Jolliffe,et al.  The energized membrane and cellular autolysis in Bacillus subtilis , 1981, Cell.

[76]  W. Fischer,et al.  Effect of alanine ester substitution and other structural features of lipoteichoic acids on their inhibitory activity against autolysins of Staphylococcus aureus , 1981, Journal of bacteriology.

[77]  D. Tipper,et al.  Distribution of peptidoglycan synthetase activities between sporangia and forespores in sporulating cells of Bacillus sphaericus , 1976, Journal of bacteriology.

[78]  H. Pooley Layered distribution, according to age, within the cell wall of bacillus subtilis , 1976, Journal of bacteriology.

[79]  U. Schwarz,et al.  Novel type of murein transglycosylase in Escherichia coli , 1975, Journal of bacteriology.

[80]  D. Herbold,et al.  Bacillus subtilis N-acetylmuramic acid L-alanine amidase. , 1975, The Journal of biological chemistry.

[81]  D. P. Fan,et al.  Mutant of Bacillus subtilis Demonstrating the Requirement of Lysis for Growth , 1971, Journal of bacteriology.

[82]  C. Schindler,et al.  LYSOSTAPHIN: A NEW BACTERIOLYTIC AGENT FOR THE STAPHYLOCOCCUS. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[83]  S. Foster,et al.  Complete spore-cortex hydrolysis during germination of Bacillus subtilis 168 requires SleB and YpeB. , 2000, Microbiology.

[84]  M. Pagni,et al.  Bacillus subtilis 168 gene lytF encodes a γ-D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor, σD , 1999 .

[85]  T. Smith,et al.  The role of autolysins during vegetative growth of Bacillus subtilis 168. , 1998, Microbiology.

[86]  K. Devine,et al.  Copyright © 1998, American Society for Microbiology Lysis Genes of the Bacillus subtilis Defective Prophage PBSX , 1997 .

[87]  S. Foster,et al.  Peptidoglycan hydrolases of Bacillus subtilis 168. , 1996, Microbial drug resistance.

[88]  G. Shockman Microbial peptidoglycan (murein) hydrolases , 1994 .

[89]  G. Shockman,et al.  Chapter 7 Microbial peptidoglycan (murein) hydrolases , 1994 .

[90]  C. Harwood,et al.  Cell Wall Structure, Synthesis, and Turnover , 1993 .

[91]  J. Ghuysen,et al.  Serine beta-lactamases and penicillin-binding proteins. , 1991, Annual review of microbiology.

[92]  R. Doi Sporulation and Germination , 1989 .

[93]  A. L. Koch,et al.  How does a Bacillus split its septum right down the middle? , 1985, Annales de l'Institut Pasteur. Microbiologie.

[94]  H. Rogers,et al.  The bacterial autolysins , 1980 .

[95]  A. D. Warth Molecular structure of the bacterial spore. , 1978, Advances in microbial physiology.

[96]  J. Strominger,et al.  Enzymes that degrade bacterial cell walls , 1966 .