Ice particle morphology and microphysical properties of cirrus clouds inferred from combined CALIOP‐IIR measurements

Ice particle morphology and microphysical properties of cirrus clouds are essential for assessing radiative forcing associated with these clouds. We develop an optimal estimation‐based algorithm to infer cirrus cloud optical thickness (COT), cloud effective radius (CER), plate fraction including quasi‐horizontally oriented plates (HOPs), and the degree of surface roughness from the Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and the Infrared Imaging Radiometer (IIR) on the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) platform. A simple but realistic ice particle model is used, and the relevant bulk optical properties are computed using state‐of‐the‐art light‐scattering computational capabilities. Rigorous estimation of uncertainties related to surface properties, atmospheric gases, and cloud heterogeneity is performed. The results based on the present method show that COTs are quite consistent with other satellite products and CERs essentially agree with the other counterparts. A 1 month global analysis for April 2007, in which CALIPSO off‐nadir angle is 0.3°, shows that the HOP has significant temperature‐dependence and is critical to the lidar ratio when cloud temperature is warmer than −40°C. The lidar ratio is calculated from the bulk optical properties based on the inferred parameters, showing robust temperature dependence. The median lidar ratio of cirrus clouds is 27–31 sr over the globe.

[1]  Steven Platnick,et al.  The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Nurfiena Sagita Putri,et al.  Retrieval of radiative and microphysical properties of clouds from multispectral infrared measurements , 2016, Progress in Earth and Planetary Science.

[3]  Zhibo Zhang,et al.  Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 1. Forward model, error analysis, and information content , 2016, Journal of geophysical research. Atmospheres : JGR.

[4]  Steven Platnick,et al.  Ice cloud backscatter study and comparison with CALIPSO and MODIS satellite data. , 2016, Optics express.

[5]  Steven Platnick,et al.  Degree of Ice Particle Surface Roughness Inferred from Polarimetric Observations , 2015 .

[6]  Steven Platnick,et al.  Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals , 2015 .

[7]  Riko Oki,et al.  The EarthCARE Satellite: The Next Step Forward in Global Measurements of Clouds, Aerosols, Precipitation, and Radiation , 2015 .

[8]  J. Pelon,et al.  Lidar multiple scattering factors inferred from CALIPSO lidar and IIR retrievals of semi-transparent cirrus cloud optical depths over oceans , 2015 .

[9]  Ping Yang,et al.  Backscattering peak of ice cloud particles. , 2015, Optics express.

[10]  Anthony J. Baran,et al.  A methodology for simultaneous retrieval of ice and liquid water cloud properties. Part I: Information content and case study , 2015 .

[11]  N. Magee,et al.  Mesoscopic surface roughness of ice crystals pervasive across a wide range of ice crystal conditions , 2014 .

[12]  J. Pelon,et al.  Impacts of cloud heterogeneities on cirrus optical properties retrieved from space-based thermal infrared radiometry , 2014 .

[13]  Ann M. Fridlind,et al.  Variation of ice crystal size, shape, and asymmetry parameter in tops of tropical deep convective clouds , 2014 .

[14]  Philippe Dubuisson,et al.  Impact of cirrus clouds heterogeneities on top-of-atmosphere thermal infrared radiation , 2014 .

[15]  P. Yang,et al.  Radiative and Microphysical Properties of Cirrus Cloud Inferred from Infrared Measurements Made by the Moderate Resolution Imaging Spectroradiometer (MODIS). Part I: Retrieval Method , 2014 .

[16]  Ping Yang,et al.  Accurate simulation of the optical properties of atmospheric ice crystals with the invariant imbedding T-matrix method , 2014 .

[17]  J. Wang,et al.  Variation of the solar magnetic flux spectrum during solar cycle 23 , 2013, 1312.5816.

[18]  Andrew J. Heymsfield,et al.  Ice Cloud Particle Size Distributions and Pressure-Dependent Terminal Velocities from In Situ Observations at Temperatures from 0° to −86°C , 2013 .

[19]  P. Yang,et al.  Ice particle habit and surface roughness derived from PARASOL polarization measurements , 2013 .

[20]  P. Kaye,et al.  Incidence of rough and irregular atmospheric ice particles from Small Ice Detector 3 measurements , 2013 .

[21]  T. L’Ecuyer,et al.  Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect , 2013 .

[22]  Ping Yang,et al.  Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles , 2013 .

[23]  P. Yang,et al.  Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures , 2013 .

[24]  B. Cairns,et al.  Interactive comment on “Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 1: Methodology and evaluation with simulated measurements” by B. van Diedenhoven et al , 2012 .

[25]  Jacques Pelon,et al.  Retrieval of Cloud Properties Using CALIPSO Imaging Infrared Radiometer. Part I: Effective Emissivity and Optical Depth , 2012 .

[26]  Bryan A. Baum,et al.  Study of Horizontally Oriented Ice Crystals with CALIPSO Observations and Comparison with Monte Carlo Radiative Transfer Simulations , 2012 .

[27]  P. Minnis,et al.  Physical and optical properties of persistent contrails: Climatology and interpretation , 2012 .

[28]  J. Pelon,et al.  Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo , 2012 .

[29]  R. Armante,et al.  Bulk microphysical properties of semi-transparent cirrus from AIRS: a six year global climatology and statistical analysis in synergy with geometrical profiling data from CloudSat-CALIPSO , 2012 .

[30]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[31]  R. Lawson Effects of ice particles shattering on the 2D-S probe , 2011 .

[32]  Bryan A. Baum,et al.  Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method , 2011 .

[33]  Timothy J. Garrett,et al.  Identification of Small Ice Cloud Particles Using Passive Radiometric Observations , 2010 .

[34]  Steven Platnick,et al.  Effects of ice particle size vertical inhomogeneity on the passive remote sensing of ice clouds , 2010 .

[35]  R. Hogan,et al.  Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds , 2010 .

[36]  Hajime Okamoto,et al.  Global analysis of cloud phase and ice crystal orientation from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data using attenuated backscattering and depolarization ratio , 2010 .

[37]  Vincent Noel,et al.  A global view of horizontally oriented crystals in ice clouds from Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) , 2010 .

[38]  Ping Yang,et al.  Modeling optical properties of mineral aerosol particles by using nonsymmetric hexahedra. , 2010, Applied optics.

[39]  Bryan A. Baum,et al.  Parameterization of Shortwave and Longwave Radiative Properties of Ice Clouds for Use in Climate Models , 2009 .

[40]  D. Winker,et al.  Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms , 2009 .

[41]  K. Stamnes,et al.  CALIPSO/CALIOP Cloud Phase Discrimination Algorithm , 2009 .

[42]  William Pfalzgraff,et al.  Scanning electron microscopy and molecular dynamics of surfaces of growing and ablating hexagonal ice crystals , 2009 .

[43]  M. Bailey,et al.  A Comprehensive Habit Diagram for Atmospheric Ice Crystals: Confirmation from the Laboratory, AIRS II, and Other Field Studies , 2009 .

[44]  Mark A. Vaughan,et al.  The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description , 2009 .

[45]  Teruyuki Nakajima,et al.  A k-distribution-based radiation code and its computational optimization for an atmospheric general circulation model , 2008 .

[46]  Patrick Minnis,et al.  Uncertainties Associated With the Surface Texture of Ice Particles in Satellite-Based Retrieval of Cirrus Clouds: Part II—Effect of Particle Surface Roughness on Retrieved Cloud Optical Thickness and Effective Particle Size , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[47]  K. Sassen,et al.  Global distribution of cirrus clouds from CloudSat/Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) measurements , 2008 .

[48]  Eva Borbas,et al.  Development of a Global Infrared Land Surface Emissivity Database for Application to Clear Sky Sounding Retrievals from Multispectral Satellite Radiance Measurements , 2008 .

[49]  Albert Ansmann,et al.  Cirrus optical properties observed with lidar, radiosonde, and satellite over the tropical Indian Ocean during the aerosol‐polluted northeast and clean maritime southwest monsoon , 2007 .

[50]  Alexander Marshak,et al.  View angle dependence of cloud optical thicknesses retrieved by Moderate Resolution Imaging Spectroradiometer (MODIS) , 2007 .

[51]  R. Lawson,et al.  In Situ Observations of the Microphysical Properties of Wave, Cirrus, and Anvil Clouds. Part II: Cirrus Clouds , 2006 .

[52]  A. Baran,et al.  On the reflection and polarisation properties of ice cloud , 2006 .

[53]  Tristan L'Ecuyer,et al.  Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice Clouds , 2006 .

[54]  Zhanqing Li,et al.  A Near-Global Climatology of Single-Layer and Overlapped Clouds and Their Optical Properties Retrieved from Terra/MODIS Data Using a New Algorithm , 2005, Journal of Climate.

[55]  J. A. Smith,et al.  Temperature and salinity dependence of sea surface emissivity in the thermal infrared , 2005 .

[56]  Vincent Noel,et al.  Study of Planar Ice Crystal Orientations in Ice Clouds from Scanning Polarization Lidar Observations , 2005 .

[57]  B. Dubrulle,et al.  Horizontally Oriented Plates in Clouds , 2004, 1106.1227.

[58]  David M. Winker,et al.  Fully automated analysis of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products , 2004, SPIE Remote Sensing.

[59]  Vincent Noel,et al.  Study of Ice Crystal Orientation in Cirrus Clouds Based on Satellite Polarized Radiance Measurements , 2004 .

[60]  Matthew Bailey,et al.  Growth Rates and Habits of Ice Crystals between −20° and −70°C , 2004 .

[61]  A. Borovoi,et al.  Scattering matrices for large ice crystal particles. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  Robert Wood,et al.  Ice Particle Interarrival Times Measured with a Fast FSSP , 2003 .

[63]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[64]  Michael Hess,et al.  Correlations Among the Optical Properties of Cirrus-Cloud Particles: Microphysical Interpretation , 2002 .

[65]  J. Key,et al.  Parameterization of shortwave ice cloud optical properties for various particle habits , 2002 .

[66]  Bryan A. Baum,et al.  Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study , 2001 .

[67]  Kenneth Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .

[68]  J. Comstock,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part III: Radiative Properties , 2001 .

[69]  Y. Tsushima,et al.  Modeling of the radiative process in an atmospheric general circulation model. , 2000, Applied optics.

[70]  J. Iaquinta,et al.  Cirrus Crystal Terminal Velocities , 2000 .

[71]  K. Liou,et al.  Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .

[72]  S. Ackerman Remote sensing aerosols using satellite infrared observations , 1997 .

[73]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[74]  K. Liou,et al.  Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. , 1996, Applied optics.

[75]  J. Klett Orientation Model for Particles in Turbulence , 1995 .

[76]  K. Sassen The Polarization Lidar Technique for Cloud Research: A Review and Current Assessment , 1991 .

[77]  Frédéric Parol,et al.  Information Content of AVHRR Channels 4 and 5 with Respect to the Effective Radius of Cirrus Cloud Particles , 1991 .

[78]  M. King,et al.  Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations , 1991 .

[79]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[80]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[81]  Teruyuki Nakajima,et al.  Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation , 1988 .

[82]  Toshiro Inoue,et al.  A cloud type classification with NOAA 7 split‐window measurements , 1987 .

[83]  Teruyuki Nakajima,et al.  Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. , 1986 .

[84]  Kenneth Sassen,et al.  Remote Sensing of Planar Ice Crystal Fall Attitudes , 1980 .

[85]  W. Wiscombe The Delta–M Method: Rapid Yet Accurate Radiative Flux Calculations for Strongly Asymmetric Phase Functions , 1977 .

[86]  Hiroshi Akima,et al.  A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures , 1970, JACM.