Local polynomial regression for symmetric positive definite matrices

Summary.  Local polynomial regression has received extensive attention for the non‐parametric estimation of regression functions when both the response and the covariate are in Euclidean space. However, little has been done when the response is in a Riemannian manifold. We develop an intrinsic local polynomial regression estimate for the analysis of symmetric positive definite matrices as responses that lie in a Riemannian manifold with covariate in Euclidean space. The primary motivation and application of the methodology proposed is in computer vision and medical imaging. We examine two commonly used metrics, including the trace metric and the log‐Euclidean metric on the space of symmetric positive definite matrices. For each metric, we develop a cross‐validation bandwidth selection method, derive the asymptotic bias, variance and normality of the intrinsic local constant and local linear estimators, and compare their asymptotic mean‐square errors. Simulation studies are further used to compare the estimators under the two metrics and to examine their finite sample performance. We use our method to detect diagnostic differences between diffusion tensors along fibre tracts in a study of human immunodeficiency virus.

[1]  Faming Liang,et al.  Annealing evolutionary stochastic approximation Monte Carlo for global optimization , 2011, Stat. Comput..

[2]  Martin Styner,et al.  FRATS: Functional Regression Analysis of DTI Tract Statistics , 2010, IEEE Transactions on Medical Imaging.

[3]  Ofer Pasternak,et al.  The effect of metric selection on the analysis of diffusion tensor MRI data , 2010, NeuroImage.

[4]  Dinggang Shen,et al.  White matter abnormalities revealed by diffusion tensor imaging in non-demented and demented HIV+ patients , 2009, NeuroImage.

[5]  I. Dryden,et al.  Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging , 2009, 0910.1656.

[6]  Hongtu Zhu,et al.  Intrinsic Regression Models for Positive-Definite Matrices With Applications to Diffusion Tensor Imaging , 2009, Journal of the American Statistical Association.

[7]  Simone Vantini,et al.  Efficient estimation of three‐dimensional curves and their derivatives by free‐knot regression splines, applied to the analysis of inner carotid artery centrelines , 2009 .

[8]  Peter T. Kim,et al.  DECONVOLUTION DENSITY ESTIMATION ON SPACES OF POSITIVE DEFINITE SYMMETRIC MATRICES By , 2008 .

[9]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[10]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[11]  J. Ibrahim,et al.  Statistical Analysis of Diffusion Tensors in Diffusion-Weighted Magnetic Resonance Imaging Data , 2007 .

[12]  Baba C. Vemuri,et al.  Tensor Splines for Interpolation and Approximation of DT-MRI With Applications to Segmentation of Isolated Rat Hippocampi , 2007, IEEE Transactions on Medical Imaging.

[13]  I. Dryden,et al.  Shape-space smoothing splines for planar landmark data , 2007 .

[14]  R. Carroll,et al.  Stochastic Approximation in Monte Carlo Computation , 2007 .

[15]  Michael I. Miller,et al.  Pattern Theory: From Representation to Inference , 2007 .

[16]  P. Thomas Fletcher,et al.  Riemannian geometry for the statistical analysis of diffusion tensor data , 2007, Signal Process..

[17]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[18]  A. Fingelkurts,et al.  Functional connectivity in the brain—is it an elusive concept? , 2005, Neuroscience & Biobehavioral Reviews.

[19]  Maher Moakher,et al.  A rigorous framework for diffusion tensor calculus , 2005, Magnetic resonance in medicine.

[20]  Xavier Pennec,et al.  A Riemannian Framework for Tensor Computing , 2005, International Journal of Computer Vision.

[21]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[22]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[23]  R. Bhattacharya,et al.  LARGE SAMPLE THEORY OF INTRINSIC AND EXTRINSIC SAMPLE MEANS ON MANIFOLDS—II , 2003, math/0507423.

[24]  A. Uluğ,et al.  Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. , 2001, AJNR. American journal of neuroradiology.

[25]  M. Pourahmadi Maximum likelihood estimation of generalised linear models for multivariate normal covariance matrix , 2000 .

[26]  J. Fox,et al.  Local Polynomial Regression , 2000 .

[27]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[28]  Irène Gijbels,et al.  A study of variable bandwidth selection for local polynomial regression , 1996 .

[29]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[30]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[31]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[32]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[33]  J. Marron,et al.  Smoothed cross-validation , 1992 .

[34]  James Stephen Marron,et al.  Regression smoothing parameters that are not far from their optimum , 1992 .

[35]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[36]  James Stephen Marron,et al.  Comparison of data-driven bandwith selectors , 1988 .

[37]  M. J. Prentice Fitting Smooth Paths to Rotation Data , 1987 .

[38]  P. Jupp,et al.  Fitting Smooth Paths to Spherical Data , 1987 .

[39]  石黒 真木夫,et al.  Akaike information criterion statistics , 1986 .

[40]  A. Terras Harmonic Analysis on Symmetric Spaces and Applications I , 1985 .

[41]  J. Rice Bandwidth Choice for Nonparametric Regression , 1984 .

[42]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[43]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[44]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.