String graphs and separators

String graphs, that is, intersection graphs of curves in the plane, have been studied since the 1960s. We provide an expository presentation of several results, including very recent ones: some string graphs require an exponential number of crossings in every string representation; exponential number is always sufficient; string graphs have small separators; and the current best bound on the crossing number of a graph in terms of the pair-crossing number. For the existence of small separators, unwrapping the complete proof include generally useful results on approximate flow-cut dualities.

[1]  Michael J. Pelsmajer,et al.  Odd Crossing Number and Crossing Number Are Not the Same , 2008, Discret. Comput. Geom..

[2]  Jérémie Chalopin,et al.  Planar Graphs Have 1-string Representations , 2010, Discret. Comput. Geom..

[3]  Marcus Schaefer,et al.  Recognizing string graphs in NP , 2002, STOC '02.

[4]  Frank Thomson Leighton,et al.  Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms , 1999, JACM.

[5]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[6]  Jirí Matousek,et al.  Near-Optimal Separators in String Graphs , 2013, Combinatorics, Probability and Computing.

[7]  Jan Kratochvíl,et al.  String graphs requiring exponential representations , 1991, J. Comb. Theory, Ser. B.

[8]  Julia Chuzhoy,et al.  An algorithm for the graph crossing number problem , 2010, STOC '11.

[9]  J. Pach,et al.  Combinatorial geometry , 1995, Wiley-Interscience series in discrete mathematics and optimization.

[10]  Marcus Schaefer,et al.  Hanani-Tutte and Related Results , 2013 .

[11]  Jérémie Chalopin,et al.  Every planar graph is the intersection graph of segments in the plane: extended abstract , 2009, STOC '09.

[12]  Sudipto Guha,et al.  Improved Approximations of Crossings in Graph Drawings and VLSI Layout Areas , 2002, SIAM J. Comput..

[13]  János Pach,et al.  Which Crossing Number Is It Anyway? , 1998, J. Comb. Theory, Ser. B.

[14]  Bruce A. Reed,et al.  Computing crossing number in linear time , 2007, STOC '07.

[15]  Martin Grohe,et al.  Computing crossing numbers in quadratic time , 2000, STOC '01.

[16]  Robin Thomas,et al.  Planar Separators , 1994, SIAM J. Discret. Math..

[17]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[18]  James R. Lee,et al.  Improved Approximation Algorithms for Minimum Weight Vertex Separators , 2008, SIAM J. Comput..

[19]  János Pach,et al.  A Separator Theorem for String Graphs and its Applications , 2009, Combinatorics, Probability and Computing.

[20]  Sergio Cabello,et al.  Hardness of Approximation for Crossing Number , 2012, Discret. Comput. Geom..

[21]  Yury Makarychev,et al.  On graph crossing number and edge planarization , 2011, SODA '11.

[22]  Jan Kratochvíl,et al.  String graphs. II. recognizing string graphs is NP-hard , 1991, J. Comb. Theory, Ser. B.

[23]  János Pach,et al.  Combinatorial Geometry , 2012 .

[24]  János Pach,et al.  Applications of a New Separator Theorem for String Graphs , 2013, Combinatorics, Probability and Computing.

[25]  Frank Thomson Leighton,et al.  New lower bound techniques for VLSI , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[26]  J. Bourgain On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .

[27]  Marcus Schaefer,et al.  Decidability of string graphs , 2001, STOC '01.