A non-standard statistical approach to the silo discharge

Abstract.We present molecular dynamics simulations of the beginning of a silo discharge by gravity. The evolution of the velocity profile and the probability density functions for the displacements of the grains are obtained. These PDFs reveal non-gaussian statistics and superdiffusive behavior similar to that observed in some experiments. We propose an analytical expression for the PDFs and an explanation for its dynamical origin in connection with the ideas of the “spot" model and non-extensive thermodynamics.

[1]  Arshad Kudrolli,et al.  Diffusion and mixing in gravity-driven dense granular flows. , 2004, Physical review letters.

[2]  M. Bazant,et al.  Velocity profile of granular flows inside silos and hoppers , 2005, cond-mat/0501568.

[3]  Constantino Tsallis,et al.  Derivation of Lévy-type anomalous superdiffusion from generalized statistical mechanics , 1995 .

[4]  Angel Garcimartín,et al.  Jamming during the discharge of granular matter from a silo. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  W. W. Mullins,et al.  Experimental evidence for the stochastic theory of particle flow under gravity , 1974 .

[6]  K. K. Rao Statics and kinematics of granular materials , 1995 .

[7]  Thorsten Pöschel,et al.  Kinetic Theory of Granular Gases , 2004 .

[8]  R. M. Nedderman,et al.  A kinematic model for the flow of granular materials , 1979 .

[9]  Eberhard Bodenschatz,et al.  Defect turbulence and generalized statistical mechanics , 2004 .

[10]  Andrés Santos,et al.  Hydrodynamics for granular flow at low density , 1998 .

[11]  Y. Sawada,et al.  Anomalous diffusion and non-Gaussian velocity distribution of Hydra cells in cellular aggregates , 2001 .

[12]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[13]  R. Behringer,et al.  Self-diffusion in dense granular shear flows. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  M Ausloos,et al.  Brownian particle having a fluctuating mass. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Martin Z. Bazant The Spot Model for random-packing dynamics , 2005 .

[16]  D. Wolf,et al.  Force Schemes in Simulations of Granular Materials , 1996 .

[17]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[18]  Christian Beck Dynamical Foundations of Nonextensive Statistical Mechanics , 2001 .