Unique binding pattern for a lineage of human antibodies with broad reactivity against influenza A virus

[1]  Yu Chen,et al.  Coinfection with influenza A virus enhances SARS-CoV-2 infectivity , 2021, Cell Research.

[2]  C. Schiffer,et al.  Unique structural solution from a VH3-30 antibody targeting the hemagglutinin stem of influenza A viruses , 2021, Nature Communications.

[3]  Yan-ling Ma,et al.  Co-infection of SARS-COV-2 and Influenza A Virus: A Case Series and Fast Review , 2020, Current Medical Science.

[4]  J Gomez-Blanco,et al.  DeepEMhancer: a deep learning solution for cryo-EM volume post-processing , 2020, Communications Biology.

[5]  Á. Soriano,et al.  SARS-CoV-2 and influenza virus co-infection , 2020, The Lancet.

[6]  R. Merkl,et al.  Prediction of quaternary structure by analysis of hot spot residues in protein‐protein interfaces: the case of anthranilate phosphoribosyltransferases , 2019, Proteins.

[7]  I. Wilson,et al.  A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface , 2019, Cell.

[8]  F. Krammer The human antibody response to influenza A virus infection and vaccination , 2019, Nature Reviews Immunology.

[9]  S. Harrison,et al.  Autoreactivity profiles of influenza hemagglutinin broadly neutralizing antibodies , 2019, Scientific Reports.

[10]  Min Su,et al.  goCTF: Geometrically optimized CTF determination for single-particle cryo-EM. , 2019, Journal of structural biology.

[11]  Min Su,et al.  goCTF: Geometrically optimized CTF determination for single-particle cryo-EM , 2018, bioRxiv.

[12]  T. Sutton The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses , 2018, Viruses.

[13]  P. Palese,et al.  Overcoming Barriers in the Path to a Universal Influenza Virus Vaccine. , 2018, Cell host & microbe.

[14]  T. Kepler,et al.  Memory B Cells that Cross‐React with Group 1 and Group 2 Influenza A Viruses Are Abundant in Adult Human Repertoires , 2018, Immunity.

[15]  Conrad C. Huang,et al.  UCSF ChimeraX: Meeting modern challenges in visualization and analysis , 2018, Protein science : a publication of the Protein Society.

[16]  I. Wilson,et al.  Potent peptidic fusion inhibitors of influenza virus , 2017, Science.

[17]  J. Mascola,et al.  Preferential induction of cross-group influenza A hemagglutinin stem–specific memory B cells after H7N9 immunization in humans , 2017, Science Immunology.

[18]  Joseph H. Davis,et al.  Addressing preferred specimen orientation in single-particle cryo-EM through tilting , 2017, Nature Methods.

[19]  David Baker,et al.  Computational design of trimeric influenza neutralizing proteins targeting the hemagglutinin receptor binding site , 2017, Nature Biotechnology.

[20]  J. Nezu,et al.  Long lasting neutralization of C5 by SKY59, a novel recycling antibody, is a potential therapy for complement-mediated diseases , 2017, Scientific Reports.

[21]  D. Agard,et al.  MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy , 2017, Nature Methods.

[22]  David J. Fleet,et al.  cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination , 2017, Nature Methods.

[23]  Jianping Ding,et al.  Human antibody 3E1 targets the HA stem region of H1N1 and H5N6 influenza A viruses , 2016, Nature Communications.

[24]  Rafael Fernandez-Leiro,et al.  A pipeline approach to single-particle processing in RELION , 2016, bioRxiv.

[25]  W. Marasco,et al.  A broadly neutralizing anti-influenza antibody reveals ongoing capacity of haemagglutinin-specific memory B cells to evolve , 2016, Nature Communications.

[26]  Cinque S. Soto,et al.  Vaccine-Induced Antibodies that Neutralize Group 1 and Group 2 Influenza A Viruses , 2016, Cell.

[27]  P. Collins,et al.  Structure and Function Analysis of an Antibody Recognizing All Influenza A Subtypes , 2016, Cell.

[28]  Patrick C. Wilson,et al.  Immune history profoundly affects broadly protective B cell responses to influenza , 2015, Science Translational Medicine.

[29]  N. Grigorieff,et al.  CTFFIND4: Fast and accurate defocus estimation from electron micrographs , 2015, bioRxiv.

[30]  G. Gao,et al.  A potent broad-spectrum protective human monoclonal antibody crosslinking two haemagglutinin monomers of influenza A virus , 2015, Nature Communications.

[31]  Matthias J. Brunner,et al.  Atomic accuracy models from 4.5 Å cryo-electron microscopy data with density-guided iterative local refinement , 2015, Nature Methods.

[32]  George Georgiou,et al.  In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire , 2014, Nature Medicine.

[33]  Qing Zhu,et al.  Rapid development of broadly influenza neutralizing antibodies through redundant mutations , 2014, Nature.

[34]  Hemant D. Tagare,et al.  The Local Resolution of Cryo-EM Density Maps , 2013, Nature Methods.

[35]  Hua Yang,et al.  New World Bats Harbor Diverse Influenza A Viruses , 2013, PLoS pathogens.

[36]  Henry Chiu,et al.  An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. , 2013, Cell host & microbe.

[37]  Bian-Li Xu,et al.  Fully human broadly neutralizing monoclonal antibodies against influenza A viruses generated from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient , 2012, Virology.

[38]  N. S. Laursen,et al.  Highly Conserved Protective Epitopes on Influenza B Viruses , 2012, Science.

[39]  Conrad C. Huang,et al.  UCSF Chimera, MODELLER, and IMP: an integrated modeling system. , 2012, Journal of structural biology.

[40]  K. Lindblade,et al.  A distinct lineage of influenza A virus from bats , 2012, Proceedings of the National Academy of Sciences.

[41]  J. Crowe,et al.  A Broadly Neutralizing Human Monoclonal Antibody That Recognizes a Conserved, Novel Epitope on the Globular Head of the Influenza H1N1 Virus Hemagglutinin , 2011, Journal of Virology.

[42]  Martin H. Koldijk,et al.  A Highly Conserved Neutralizing Epitope on Group 2 Influenza A Viruses , 2011, Science.

[43]  J. Skehel,et al.  A Neutralizing Antibody Selected from Plasma Cells That Binds to Group 1 and Group 2 Influenza A Hemagglutinins , 2011, Science.

[44]  A. García-Sastre,et al.  Influenza A viruses: new research developments , 2011, Nature Reviews Microbiology.

[45]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[46]  Gira Bhabha,et al.  Antibody Recognition of a Highly Conserved Influenza Virus Epitope , 2009, Science.

[47]  Noriko Kishida,et al.  Cross-Protective Potential of a Novel Monoclonal Antibody Directed against Antigenic Site B of the Hemagglutinin of Influenza A Viruses , 2009, PLoS pathogens.

[48]  Colin A. Russell,et al.  The Global Circulation of Seasonal Influenza A (H3N2) Viruses , 2008, Science.

[49]  Torsten Schwede,et al.  BIOINFORMATICS Bioinformatics Advance Access published November 12, 2005 The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling , 2022 .

[50]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[51]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[52]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[53]  J. Skehel,et al.  Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. , 2000, Annual review of biochemistry.

[54]  H. Dorkin,et al.  Immunoprophylaxis with palivizumab, a humanized respiratory syncytial virus monoclonal antibody, for prevention of respiratory syncytial virus infection in high risk infants: a consensus opinion. , 1999, The Pediatric infectious disease journal.

[55]  Y Tateno,et al.  Comparison of complete amino acid sequences and receptor-binding properties among 13 serotypes of hemagglutinins of influenza A viruses. , 1991, Virology.